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Background



Introduction

* Motivations
* TC lifecycle forecasting (e.g sudden change in intensity)
* Role of the ocean-atmosphere interactions
e TC evolution in the context of climate change

* Tropical Cyclones :
* |nteractions between ocean and atmosphere
e Several different processes occur simultaneously
* These are multi-scale phenomena in both space and time
* These are rare and extreme events
* Observations:
There is no one single satellite missions with one single sensor able to
* measure a wide range of different parameters (to describe both ocean and atmosphere),
e provide both large coverage and high resolution (space)

* sample at high resolution (time)

When available in-stu observations and when necessary models shall be considered to fully exploit
the satellite observations and/or complete the satellite point of view.



Satellite/Sensors available

Context and History

Tropical Cyclones is monitored with satellite date since the launch of the
first meteorological satellites TIROS in the 60’s (Sadler 1962).

Typhoon Ruth (1962)



Satellite/Sensors available

Context and History

Tropical Cyclones is monitored with satellite date since the launch of the
first meteorological satellites TIROS in the 60’s (Sadler 1962).

Many countries now have a Earth Observation program to launch satellites
or satellite constellations.

The number of EO observations increases together with spatial and
temporal sampling.

The data policy is moving toward public access.

Computation facilities also evolve to become remote (data center)

Using observations in synergy should become more and more easier.

Typhoon Ruth August 14, 1962

These facts imply to properly define the approach before using data in
order to not be overwhelmed by the data volume, data variety and data
quality



Satellite/Sensors available

Few rules

Do not focus on data from one single sensor, mission or space agency.

== Have a global view of available missions. Take the most of them
A sensor provides a filtered and distorted view of reality.

==) Understand the basic principles of the measurement

Geophysical measurements are only estimates through a inverse problem. Solving such a
problem usually requires assumptions and validation exercices.

== Know the limitations of the derived geophysical parameters you use.

Instruments parameters contains more than what is provided in the so-called Level-2
products (geophysical information)

==) Go for Level-1 (Level-0), if you can.



Satellite/Sensors available

High-level Earth Observation missions

They are called geostationnary satellites. First was launched in 1963.

 Their position is fixed relative to the Earth and their altitude is 36 000 km

They are widely used in meteorology since the 70’s.

e  Temporal and spatial resolutions are high
e Temporal : <1h
Spatial : O(km)

. Sensors are radiometers operating in visible and IR. Several channels are available for
each band.

e They are commoly used to provide information on clouds (speed ca|55|f|cat|on helght)
and surface (sea surface temperature) i » '

e They do not see the surface when there are clouds

Irma September 8, 2017 (GOES-16)



Satellite/Sensors available

Low-level Earth Observation missions

They are rotating around the Earth. They do not observe the same point constantly. The
satellite cycle defines the duration to come back at the exact same position (typically

about tens of days).

e They are used for Earth Observation in geoscience since the 1978 (SEASAT).
e The temporal resolution depends on the orbit parameters and sensor parameters (swath

size)

. Spatial resolution is different for each sensors. Microwave sensors are scatterometers,

altimeters, radiometers, Synthetic Aperture Radar.

. Over the ocean, they aims at providing information on ocean surface waves wmd

temperature, rain, currents
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Geophysical parameters

Significant Wave height Altimeter

Swell Directional spectrum Synthetic Aperture Radar (SAR)

Sea Surface Height (SSH) Altimeter

Sea Surface Salinity (SSS) Radiometer

Sea Surface Temperature Radiometer (HEO & LEO)

Rain Rate Radiometer, radar (GPM)

Cloud (motion, height) Radiometer (HEO)

Ocean surface wind Radiometer, Altimeter, SAR, scatterometers
Sea surface roughness (Normalized Radar Cross SAR, scatterometer, altimeter

Section)

Radial velocity (Doppler) SAR



Challenges for Tropical Cyclone monitoring with satellite

* Orbits & Swath : Excepted from CYGNSS orbit, there is no satellite mission specifically designed for
observing Tropical Cyclone and especially the ocean surface within a Tropical Cyclone.

Most of the orbits are chosen to be polar with a cycle of several days.
This precludes continuous observations of the Tropical Cyclone.

However, thanks to swath width that can be very large (¥1000km for SMOS radiometer for instance),
the revisit time is generally better than the orbit cycle.



Challenges for Tropical Cyclone monitoring with satellite

* Orbits & Swath : Excepted from CYGNSS orbit, there is no satellite mission specifically designed for
observing Tropical Cyclone and especially the ocean surface within a Tropical Cyclone.

Most of the orbits are chosen to be polar with a cycle of several days.

This precludes continuous observations of the Tropical Cyclone.

However, thanks to swath width that can be very large (¥1000km for SMOS radiometer for instance),
the revisit time is generally better than the orbit cycle.

* Sensors & Algorithms : Sensors and associated algorithms are not specifically designed to observe such
extreme situations.

In addition to possibly have significant contributions from a variety of geophyiscal phenomena occuring
at the same time,

* Observations of Tropical Cyclone are rare (w.r.t other situations)
e Collecting reference data to develop and validate the algorithm is more difficult than for regular

met-ocean conditions



Local & Non-local Approaches

e Local:

This approach is the most natural : For a given on Tropical Cyclone, it consists in collecting information
based on satellite acquisitions that are collocated in time and space with the TC vortex.

This requires to have
* Collocated data with the Tropical Cyclone of interest
e Algorithms able to perform in extreme conditions.

Local approach is typically adopted to provide estimates of the wind field, rain, waves in the TC vortex.



Local & Non-local Approaches

Local :

This approach is the most natural : For a given on Tropical Cyclone, it consists in collecting information
based on satellite acquisitions that are collocated in time and space with the TC vortex.

This requires to have
* Collocated data with the Tropical Cyclone of interest
e Algorithms able to perform in extreme conditions.

Local approach is typically adopted to provide estimates of the wind field, rain, waves in the TC vortex.

Non-local :

This approach has been firstly adopted to characterize the impact of the TC vortex on the upper ocean

mixed layer. It consists in collecting information on the ocean state after the Tropical Cyclone has
moved away.

This does not require algorithms able to perform in extreme conditions but data collocated with the TC
wake. The time difference between TC and observation is important for the analysis.

Non-local approach is typically used for analysing the change in sea surface temperature, sea surface
height, sea surface salinity or chlorophyll blooms after TC pass. It can also be used for swell analysis



Synergy Examples :
Tropical Cyclone Intensity & Structure



Tropical Cyclone Intensity & Structure

Example 1: TC Track at Operational Centres

Regional Specialized Meteorological Centres from WMO document the TC intensity every 6-hours.

MICHAEL

In particular, they provide TC

e Center location

* Eye diameter

e Radius of maximum wind

* Maximum sustained wind speed (defined over 1-min)

* Wind radii at 34, 50 and 64 kts in the four geographical quadrants.
e Surface Pressure

Example of 34-kt, 50-kt and 64-kt wind radii indicated in the strom track of
Michael (2018) for each of the four geographical quadrants (SE,SW,NE,NW) at
a given date. 0 10 20 30 Py 50 60 70 80

Ocean Surface Wind Speed [m/s]




Tropical Cyclone Intensity & Structure

Example 1: TC Track at Operational Centres

All data available are considered to provide a subjective
analysis in near-real-time: The so-called « storm track » .

A post-processing is perfomed after the TC event to
refine this NRT analysis with additional data. This re-
analysis is termed « storm best-track ».

The best-track dataset is widely used in the scientific
community for case studies but also to evaluate the TC
charactersitics evolution trend on a long term. Best-
tracks ranges from 1850 up to now.

This is a first example of synergy to characterize the TC
vortex. The approach can be considered as local,
although data analysis is performed to provide a
information every 6 hours.
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with National Hurricane Center real-time best track for Marie (18th tropical
cyclone of the eastern North Pacific season).




Tropical Cyclone Intensity & Structure

Example 2: New generation of radiometers for wind radii estimate

Date used
* L-band SMOS (ESA) - Reul et al., 2012; 2016
* L-band SMAP(NASA) - Yueh IEEE TGRS 2016; Meissner, BAMS 2017

* Multi-frequency AMSR-2 (JAXA) - Zabolotskikh et al., GRL 2013 .




Tropical Cyclone Intensity & Structure

Example 2: New generation of radiometers for wind radii estimate

Operational ocean surface wind field from space are usually provided by scatterometers, operating at C- or

Ku- Band.

However, Ku-band is rapidly contaminated by rain in TC and C-band backscattered signal in co-polarization
sensitivity is decreasing at high wind speeds. This prevents from accurate wind speed estimates in tropical

cyclone.
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Tropical Cyclone Intensity & Structure
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Example 2: New generation of radiometers for wind radii estimate

In particular,

e the use of L-band and the combination of different frequencies for AMSR-2 allows to be less sensitive to

the hydrometeors in the atmosphere.

e at theses frequencies the brightness temperature measured by radiometer is more correlated to the
ocean surface wind speed than the normalized radar cross section as measured by scatterometers in co-

polarization
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Latitude

Tropical Cyclone Intensity & Structure

Example 2: New generation of radiometers for wind radii estimate

These 3 Radiometers have large swath and continuous acquisitions that allows providing TC observations
regularly. This favors simultaneous acquisitions over TC when airborne data are available. This point is
particulary important for algorithm development and validation.
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Tropical Cyclone Intensity & Structure

Example 2: New generation of radiometers for wind radii estimate

These 3 Radiometers have large swath and continuous acquisitions that allows providing TC observations
regularly. This favors simultaneous acquisitions over TC when airborne data are available. This point is
particulary important for algorithm development and validation.

Their spatial resolution is about same, around 50 km. To note a radius of maximum wind speed of a major

hurricane (cat-3 to -5) is about 40 km. These sensors are thus limited to be describe the inner core of a
Tropical Cyclone, but are rather adapted for wind radii estimate.
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Tropical Cyclone Intensity & Structure

Example 2: New generation of radiometers for wind radii estimate
These 3 Radiometers have large swath and continuous acquisitions that allows providing TC observations
regularly. This favors simultaneous acquisitions over TC when airborne data are available. This point is

particulary important for algorithm development and validation.

If properly intercalibrated they can be used together to describe the TC structure
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Tropical Cyclone Intensity & Structure

Example 2: New generation of radiometers for wind radii estimate

When combined together, it has been shown that they could be used to monitor the TC outer structure
evolution along the whole TC lifecycle with an increased time sampling.
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Tropical Cyclone Intensity & Structure

Example 2: New generation of radiometers for wind radii estimate

When combined together, it has been shown that they could be used to monitor the TC outer structure
evolution along the whole TC lifecycle with an increased time sampling
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Tropical Cyclone Intensity & Structure

Example 3: Synergy between Sensors C-Band SAR & L-Band Radiometers

Data Used:
C-band SAR from Sentinel-1 A, Sentinel-1 B (ESA) and Radarsat-2 (MDA/CSA)
L-band Radiometer from SMAP (NASA)



Tropical Cyclone Intensity & Structure

Example 3: Synergy between Sensors C-Band SAR & L-Band Radiometers

Recent measurements with active radar (SAR) have shown a different sensitivity between the bakscattered
signal from the surface at C-Band depending on the polarization.

In particular, the sensitivity of the measured signal across the hurricane eye is much higher in cross-
polarization than in co-polarization. This is new compared to scatterometers operating in co-polarization
(see slide before).



Tropical Cyclone Intensity & Structure

Example 3: Synergy between Sensors C-Band SAR & L-Band Radiometers

Recent measurements with active radar (SAR) have shown a different sensitivity between the bakscattered
signal from the surface at C-Band depending on the polarization.

In particular, the sensitivity of the measured signal across the hurricane eye is much higher in cross-

polarization than in co-polarization. This is new compared to scatterometers operating in co-polarization

(see slide before).
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Tropical Cyclone Intensity & Structure

Example 3: Synergy between Sensors C-Band SAR & L-Band Radiometers

MICHAEL 2018/10/10 08:23 UTC

In the case of ocean surface wind speed, algorithms
have been developed to infer ocean surface wind
speed from the radar backscattered in co- and cross-
polarization.

Collocations with US airplane measurements have
been used.
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Tropical Cyclone Intensity & Structure

Example 3: Synergy between Sensors C-Band SAR & L-Band Radiometers

IRMA Tropical Cyclone
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Tropical Cyclone Intensity & Structure

Example 3: Synergy between Sensors C-Band SAR & L-Band Radiometers

In spite of the different technology used between a L-band radiometer and C-band SAR, a remarkable
agreement has been found between the two sensors when comparing at low resolution

LIONROCK - CAT-3 | 3 Vmax: 54.0 | 54.0 m/s Track Time: 2016/08/27 18:00 | 2016/08/27 18:00 - SAR (SIAJEW/GRDH) Acq. Time: 2016/08/27 20:52:58 - SMAP Acq. Time: 2016/08/27 21:08:38
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Tropical Cyclone Intensity & Structure

Example 3: Synergy between Sensors C-Band SAR & L-Band Radiometers

SAR swath are smaller than radiometer and due to the high resolution of the volume data to store onboard and
to downlink SAR cannot perform acquisitions continuously. HR SAR TC observations are sparse

Thus, in practice, we have

e alarge number of observations at low resolution that can be used to document the TC outer core
 a much smaller number at very high resolution that can be used to document the TC inner core,

inlcuding the eyewall.

This represents a unique data set to
e Assess the impact of the resolution on the TC vortex as observed by a radiometer
* Learn this resolution effect to possibly emulate high resolution observations from any radiometer data
and derive relationship between outercore, innercore and TC evolution.



Tropical Cyclone Intensity & Structure

Example 3: Synergy between Sensors C-Band SAR & L-Band Radiometers

Taking benefit of collocations between C-band SAR and L-band SMAP radiometer, direct comparisons between C-
band radar cross-section and L-band brightness temperature have been performed at L-band resolution.
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Example 3: Synergy between Sensors C-Band SAR & L-Band Radiometers
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Example 3: Synergy between Sensors C-Band SAR & L-Band Radiometers
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Tropical Cyclone Intensity & Structure

Example 3: Synergy between Sensors C-Band SAR & L-Band Radiometers

Taking benefit of collocations between C-band SAR and L-band SMAP radiometer, direct comparisons between
C-band radar cross-section and L-band brightness temperature have been performed at L-band resolution.

The very strong similarity between the two signals confirms the same sensitivity to the ocean surface over
extreme.

As the sensitivity of L-band radiometer to the foam has already been demonstrated [Nordberg, 1971], we could
conclude from this joint analysis that C-band radar in cross-polarizations is
* more sensitive to foam than in co-polarization
or
e Sensitivie to different breaking waves than in cross-polarizaiton, those breaking waves being less
directional and directly linked to the foam contributing to L-Band

The reason for this similarity is still to be fully explained. This may be answered with electromagnetic model
coupled with ocean surface model to simulate both passive and active signals




Tropical Cyclone Intensity & Structure

Example 4: Combining the wind estimates with model

Although the combination of low resolution measurements allows a higher resolution sampling of the
storms, the sampling is not on a regular grid in time and space.

Assimilation schemes used to include wind measurements in the numerical models usually assimilate zonal
and meridional components of the wind field, reject the stongest values of wind speed as measured by
radiometers and decimate the data before assimilation.

Another approach is to use the model as a guide to interpolate the observations on a regular grid in space
and time and provide a product that combines the data without the limitation of the assimilation.
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Example 4: Combining the wind estimates with model

ECMWF 10-m Wind Speed for 13-Jan-2016
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The model outputs are used at each time
step available during a window of 24 hours
to compute the flow field

WSAT Asc Pass Hour of Day for 13-Jan-2016 [m/s]
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All observations available during this
windows are considered
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Example 4: Combining the wind estimates with model

ECMWF 10-m Wind Speed for 13-Jan-2016
ECMWF 10-m Wind Speed for 13-Jan-2016
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The model outputs are used at each time
step available during a window of 24 hours
to compute the flow field

WSAT Asc Pass Hour of Day for 13-Jan-2016 [m/s]
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All observations available during this
windows are considered and morphed
with respect to the flow field estimated
from the model
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Example 4: Combining the wind estimates with model

ECMWF 10-m Wind Speed for 13-Jan-2016
ECMWF 10-m Wind Speed for 13-Jan-2016
ECMWF 10-m Wind Speed for 13-Jan-2016
ECMWF 10-m Wind Speed for 13-Jan-2016
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The model outputs are used at each time
step available during a window of 24 hours
to compute the flow field

WindSat 10-m Wind Speed for13-Jan-2016 12:02°UTC [m/s]
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All observations available during this
windows are considered and advected
with respect to the flow field estimated
from the model to produce wind estimates
at any given time
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Example 4: Combining the wind estimates with model



Synergy Example :
Tropical Cyclone Intensity & Tropical Cyclone Waves



Tropical Cyclone Intensity & Tropical Cyclone Waves

* Two types of sensor can provide information on waves through the clouds
* Altimeters provide a significant wave height measurement along the satellite track
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Tropical Cyclone Intensity & Tropical Cyclone Waves

* Two types of sensor can provide information on waves through the clouds
* Altimeters provide a significant wave height measurement along the satellite track

The exploitation of altimeters measurements allowed to provide empirical and semi-empirical models
to estimate integrated waves parameters with respect to storm parameters such as translation speed,
maximum sustained wind speed and radius of maximum wind speed
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Tropical Cyclone Intensity & Tropical Cyclone Waves

* Two types of sensor can provide information on waves through the clouds
* Altimeters provide a significant wave height measurement along the satellite track

The exploitation of altimeters measurements allowed to provide empirical and semi-empirical models
to estimate integrated waves parameters with respect to storm parameters such as translation speed,
maximum sustained wind speed and radius of maximum wind speed
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Tropical Cyclone Intensity & Tropical Cyclone Waves

* Two types of sensor can provide information on waves through the clouds
* Altimeters provide a significant wave height measurement along the satellite track
* SAR provide an estimate of the ocean swell
SAR has been used for a while to provide ocean swell measurements and then to combined all swell
mesurements available from SAR at different times but corresponding to the same storm.

November 2020
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Tropical Cyclone Intensity & Tropical Cyclone Waves

* Two types of sensor can provide information on waves through the clouds
* Altimeters provide a significant wave height measurement along the satellite track

* SAR provide an estimate of the ocean swell
Same exercice is applied to the case of Tropical Cyclones

Data used

e Sentinel-1 A and Sentinel-1 B operating in Wave Mode
SAR is used to estimate the swell wavelength and direction
with the x-spectra computed from wave mode acquisitions

e Tropical Cyclone tracks
Tracks are used to know the location of the TC w.r.t to time
and help finding the waves source.

* L-band radiometer
SMOS-derived wind define the TC vortex structure

2020 November 24



Tropical Cyclone Intensity & Tropical Cyclone Waves

* Two types of sensor can provide information on waves through the clouds
* Altimeters provide a significant wave height measurement along the satellite track
* SAR provide an estimate of the ocean swell
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Each system is characterized by a wavelength, direction and a significant wave height.
The swell is propagated with respect to its direction and group velocity assuming
propagation in open ocean without swell-current interactions.
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Tropical Cyclone Intensity & Tropical Cyclone Waves

* Two types of sensor can provide information on waves through the clouds
* Altimeters provide a significant wave height measurement along the satellite track
* SAR provide an estimate of the ocean swell
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Tropical Cyclone Intensity & Tropical Cyclone Waves
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Tropical Cyclone Intensity & Tropical Cyclone Waves
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the
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date of 2015

Example of retro-propagated Sentinel-1 A Swell Measurements. Data acquired the 2015 Sept 8 16:40 to 16:46 UTC.

Refocalisation area is found along the Jimena track the 6th of September. On the right hand side of the track.
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200

250

300 350 400 450 500
Swell Wavelength [m]

2015/09/07 - 00:00

50°N ; - L)
30°N ..' ‘ o .._... .../.',.ug
Different wavelengths are v ‘
observed depending on Kilo Example
the swell direction of P .
propagation. Ton || TR PR R, N s A R B RS RS
100 S
150°E 180° 150°W 120°W 90°W
2 3 4 5 6 1 8 9 10

Trajectory Speed [m/s]

2020 November 24



Tropical Cyclone Intensity & Tropical Cyclone Waves
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Tropical Cyclone Intensity & Tropical Cyclone Waves
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In this case where,
— Wind speed is very intense (110-120 kts),
— Hummicane translation speed is 4 m/s,
— Radius of maximum wind speed is about 100 km

The extended fetch is small. Front/Rear asymmetry between

wind generated waves wavelengths is not pronounced
(300/200m).

No Left/Right asymmetry can be observed.
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In this case, where
— Wind speed is less intense (~80 kts),
— Hurricane translation speed is the same (~4 m/s),
— Radius with wind speed > 25 m/s is about 200 km

The extended fetch is higher than in the previous case.
Front/rear asymmetry in the hurricane generated waves
wavelength is very pronounced. No left/right asymmetry.

200 m wavelengths are emitted at the rear whereas
wavelengths up to 400 m are generated ahead of the TC
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Tropical Cyclone Intensity & Tropical Cyclone Waves

Between L2 SMOS, L3
Winds and ECMWF wind
speeds

* Radius of the maximum
wind speed are comparable

20°N

* Maximum wind speeds
from measurements are
significantly higher
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Tropical Cyclone Intensity & Tropical Cyclone Waves

Between L2 SMOS, L3
Winds and ECMWF wind
speeds

* Radius of the maximum

wind speed are comparable 2w

* Maximum wind speeds
are comparable

28°N

26°N

24°N

.......

- ECMWF wind

..........

Wind Speed [m/s]

Wind Speed [m/s]

[ ———— ]
0

Transect along latitude

- L2 SMOS

W, -4
- L3 Sat
E5* g -  ECMWF Model [

Latitude [deg]

Transect along longitude

1] | |

) | 1
— L2 SMOS
- L3 Sat
—  ECMWF Model []

160 162 164 166 168 170
Longitude [deg])

Track File: 2015/09/07 - 06:00:00 UTC

10 15 20 25 0 L2 SMOS: 2015/09/07 - 06:48:13 UTC

Wind Speed [m/s]

2020 November 24



Tropical Cyclone Intensity & Tropical Cyclone Waves

* Swell generated by hurricanes can be documented using Sentinel-1A coupled with
hurricanes tracks and taking advantage of the back-propagation technique.

* Application to Kilo hurricane, show that S-1A enables to describe the wavelength

emitted by hurricane:
* wavelength variation of hurricanes generated waves can be studied with
respect to their propagation direction and during the hurricane lifetime
* wave properties as observed by SAR are consistent with available wind
speed from SMOS or/and other radiometers measurements. The extended
fetch effect is clearly observed

2020 November 24



Synergy Example :
Tropical Cyclone Intensity & Tropical Cyclone Wake

Combot et al., PhD Thesis



Tropical Cyclone Intensity & Tropical Cyclone Wake

 Here the goal is to study the relationship between the TC wake properties and the TC vortex
properties.

* Focus is the cooling of the sea surface temperature and the trench in the sea surface height
following work from Kusryavtsev et al. (2019), where it is assumed that the ocean response to a
moving TC is largely dominated by baroclinic effects to derive the following relationships
between sea surface anomaly (SSTA) or the sea surface height anomaly (SSHA) and TC properties
(Vmax, Rmax, Vfm) and the Brunt-Vaisala frequency of the seasonal thermocline (N).

SSTA o ( Vim )—1
Vmax'N(wz))j(g'a'f(l/Z)) FRmax

Vr.'z'mx |4 fm

e First analysis of SST anomalies due to TC have been performed by Ginis (2002) and for instance
more recently by Mei and Pasquero (2013) or Vincent et al. (2012).

* First analysis of SSH anomalies due to TC have been performed by Emanuel (2001) .
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Tropical Cyclone Intensity & Tropical Cyclone Wake

Sea Surface Height

* For SSH, 6 different altimeters are used to get the maximum observations available.

Jason 1 Jason 2 Jason 3 HY-2A SARAL  Cryosat-2 S3A
Instrument Poseidon-2 Poseidon-3 Poseidon-3B ALT Altika SIRAL SRAL

66 66 SSO SSO near polar 5SSO

CNES  CNES CNES  NSOAS  CNES ESA ESA

20022013  2008-now  2016-now  2011-now 2013-now 2011-now 2016-now
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Tropical Cyclone Intensity & Tropical Cyclone Wake

Instead of using a daily product that gathers all the measurements with unadapted averaging, here each track
is analyzed individually w.r.t the TC location.

Each segment between the 6 —hourly track information is divided into three equivalent segments (2
collocated. 1 intermediate). In the intermediate segment, the track information are interpolated.

The pre-storm condition associated to sea surface height is computed using the measurements acquired
during the 2 weeks before the storm arrival.
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Tropical Cyclone Intensity & Tropical Cyclone Wake

The sea surface height anomaly is computed for each track.

Within each segment, the altimeter track with highest value of anomaly is kept for the analysis

Example of two sea surface height anomalied as measured by altimeter for Hector (top) and Lane
(bottom) TC
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Tropical Cyclone Intensity & Tropical Cyclone Wake

Sea Surface Temperature

e For SST the analysis has been done from daily products.

| | L4-ssH OSTIA REMSS ISAS-15 Argo [

Type/Level | L4-daily LA4-daily LA-daily Climatology  Individual Pro-

Version Delayed mode N/A 1)MW N/A Delayed only
2)MW+IR

2010-2018 2010-2018 2010-2018 N/A 2010-2018
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Tropical Cyclone Intensity & Tropical Cyclone Wake

The pre-storm condition associated to sea surface temperature is computed using the measurements
acquired during the 2 weeks before the storm arrival.

The post-storm SST anomalies are then computed for the 10 days after the TC (1 per day). The strongest
values is selected. It is generally found to be between 1 and 3 days after TC pass.

b)

a)

.........

h\
Hart et al., 2007
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Tropical Cyclone Intensity & Tropical Cyclone Wake

Vortex Properties

The vortex properties are given by high resolution available from SAR and TC best-track. SAR data are from
Sentinel-1 A, Sentinel-1 B and Radarsat-2.

Because SAR is high resolution with exclusive acquisition modes and data storage/limitations, there is no
continuous acquisition in the mode suited for TC monitoring.

An acquisition strategy has been developed. It relies on two assumptions (valid)
e TC track can be forecasted up to 5 days in advance (with associated uncertainty cone)

e Satellite Mission Planning teams operating Sentinel-1 and Radarsat-2 can change the acquisition
plan on short notice

SHOC, a campaign for TC monitoring with SAR is now operated since 2016 to maximize the number of TC
observations.
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Tropical Cyclone Intensity & Tropical Cyclone Wake MICHAEL 2018/10/08 10:00 UTC

SAR data collection

Forecast TC tracks

/ . = Hurricane track
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Tropical Cyclone Intensity & Tropical Cyclone Wake

Ocean Properties

The modulation of the oceanic response to any forcing depends
on its stratification described by the Brunt-Vaisala frequency N
define by the density gradient of the seasonal thermocline:

Ny — /9P — P
p hl—h0

N, is computed from by in-situ measurements in the vicinity of
TC before the TC arrival or from the ISAS-15 climatology of
vertical profiles after estimating h, and h, for each profile
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Tropical Cyclone Intensity & Tropical Cyclone Wake

90°N T ] T ‘ : ; 80
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Database of SAR acquisitions available for the study.
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Tropical Cyclone Intensity & Tropical Cyclone Wake
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Tropical Cyclone Intensity & Tropical Cyclone Wake

Results
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Tropical Cyclone Intensity & Tropical Cyclone Wake

Results

SSTA from scaling

SAR+argo
05 ™
s
s
LI 4
=04 ~ *
g 7’
=g D
[
=03 \ 1
g &
& o8 %
£ g ©
S a2
<
A L
A o1 »
o L& i IERESNSRR
0 0.1 02 0.3 04
SSHA altimeter (m)
SAR+A
10 oo ”
s
9 Ll i d
e
3 ,"
> ° ’
’ e
L] //
5 s &7
A - P
. ‘&
4 L] Q ,"D .
3 ; ,ﬂ' ®
. ®
v
l 3
0 i 1
n 2 4 £ E 10

SSTA from L4 Remss MW/IR

C.‘.‘

SAR+climato
05 ’
s
s
o
0s T A T
¢ o
s X
-
03 0
L]
)
a0z =
2 L]
01 °
. .
Or‘,,. H j—tif = - J 23}
o 01 02 c3 o3 s
SSHA altimeter (m)
= SAR+climato
10 i %
9 g
. R 7
3- 7
s
- ./
-
o g
° 7
5 e a8
. o2
ar Ty
° Z| 2
3 o= gl
2 °
1 {'
9 i 1
0 2 8 B2 s "

SSTA from L4 Remss MWAR

8'I'K0al’o BTK +climato
05¢ ’ 05 Py ,
e ® ° . ° it
8.7 ° s
o4} . o-— %17 04 o * e
° -4 o' ,o"
< ‘@ °
03} e ": 3 03 = w -
e ®® ! 3 g Y 4
Y . - o N °
0z » ‘ - 0z o® ':.. P
< .o‘e - < o\do
o1t 9 ° 01} o -
& g &
o
[ - - —_— —_— 0¥ S - — — —
[ 01 02 83 24 as o 21 0.2 0.2 0a 0s
SSHA oftimeter (m} SSHA altimeter (m)
= BTK+Argo 25 BTK +climato
v /. | //
a rd
s & = ’
7’ /
$ z . > - z
s ® ’ £ L * s
? , = ® ’
? - = & @ z T - - z
- . © o 4 s
& 6 /' & g //
*e s.® ¢ @
%z . ~ 54 . - %,
’ S . e : &
., L ®==) )
a- o, 4~ y o
- e/ A -] ’%.
- .. 4 g - > G /.'DA:' g
? 2 x .
! ® { - ?
:1‘ ® t < ;
o ? 3 2 8 10 2 ? 4 . 3 10

SSTA from L4 Remss MW/AR

SSTA from L4 Remss MW/IR

10

Vim (m.s 1)

— 10

B
Vim (m.s™)

2020 November 24



Conclusions



Conclusions

Do not focus on data from one single sensor, mission or space agency.

==> Have a global view of available missions. Take the most of them
A sensor provides a filtered and distorted view of reality.

== Understand the basic principles of the measurement

Geophysical measurements are only estimates through a inverse problem. Solving such a problem
usually requires assumptions and validation exercices.

== Know the limitations of the derived geophysical parameters you use.

Instruments parameters contains more than what is provided in the so-called Level-2 products
(geophysical information)

== Go for Level-1 (Level-0), if you can.

When combining data from different sensors
* |ntercalibration may be required to ensure consistency between 2
missions/instruments/algorithms
* Semi-physical, statistical models, numerical is often needed to guide/help the synergy



