Mesoscale processes and dynamics in the Marginal Ice Zone: Importance of satellite observations

Johnny A. Johannessen with contribution from Anton Korosov, Einar Olason,

NERSC

Background Mesoscal processes and by any air on the MIZ are entirely resulting fanging up to go in a local ice - ocean interactions > Mesoscale processes and variability Ν

Summary

т

NERSC

11

Large scale ocean circulation in the high latitude and Arctic Ocean

Passive Microwave Observations from SSMI

http://www.arctic-roos.org/

NERSC

Large scale sea ice drift – 21-23 NOV. 2020

MULTI-OI / 2020-11-21 to 2020-11-23

http://osisaf.met.no/p/osisaf_hlprod_qlook.php?prod=LR-Drift&area=NH

NDRSC Q

Atmosphere-ocean-ice interactions in the Marginal Ice Zone

Ice cover heterogeneity plays a role in:

- Melt-pond distribution
- Ridge formation
- Lead formation
- Momentum transfers
- Heat exchange

There are complex feedbacks and processes yet to be understood

Source: apl.washington.edu

Satellite Observations in the Arctic Marginal Ice Zone

Quantity	Type of observation and variable	Key satellite sensors
Sea Ice	Concentration, type, area, thickness, age, drift, leads, polynias, iceberg, ridges,	Passive microwaves, SAR, Scatterometer, altimeter, CFOSAT, optical
SST	Skin temperature <i>(upper micrometer and upper cm)</i>	Infrared radiometer, Passive microwave radiometer
SSS	Skin salinity (upper 20 cm)	Passive microwave radiometer valueable for thin ice detection
Surface Current	Geostrophic current, Ekman current, Stokes drift, range Doppler-based total surface current	Altimeter, SAR, scatterometer, (CFOSAT)
Snow cover	Extent, thickness, Snow-water equivalent	SAR, altimeter, scatterometer
Sea level	In open water direct, <i>in presence of</i> <i>sea ice the freeboard must be removed</i>	Altimeter
Surface waves	Wavelength, wave spectra, SWH	SAR, optical, altimeter, CFOSAT
Wind	Wind speed, streaks, vector wind	SAR, scatterometer, altimeter, CFOSAT
Color	Chlorophyll, phytoplankton	Spectrometers
Sun glitter	Sunlight reflected from the surface	Spectrometers

The Electromagnetic spectrum

11

Typical Interaction for Electromagnetic Radiation in the MIZ

MIZ processes

The marginal ice zone is known to undergo complex Ocean - Sea Ice - Atmosphere interactions that are manifested both in the structure of the ice edge, in the sea ice motion and in the open water. Among these are:

Type of process	Dominant forcing	Satellite sensing
Upwelling	Wind driven shear in the Ekman current	SAR, optical, PMW, Scatt
Mesoscale eddies	Current shear & frontal instabilities in the upper ocean	SAR, optical
Wind streaks	Unstable atmospheric boundary layer	SAR, optical
Wave break-up	Wave propagation in ice	SAR, optical
Internal waves (IW)	Tides, current fronts	SAR, optical
Ice jets, bands, filaments	Upper ocean	SAR, optical

NDRS 0

SIMULATED ICE EDGE UPWELLING USING A SEA ICE MODEL COUPLED WITH A 2-LAYER OCEAN MODEL

COURTECY RØED and O 'BRIEN, 1983

NERSC

11

11

https://ovl.oceandatalab.com

NERSC D

11

Radarsat-2 SAR image from 30 October 2015

X - marks center of eddy

Courtecy Ben Holt JPL/NASA

SOLab, RSHU, St. Petersburg, 24-26 November, 2020

NASA, https://modis.gsfc.nasa.gov/gallery/individual.php?db_date=2014-04-06

NERSC

- Intermittent cold surges
- Occur when cold polar air is discharged over comparatively warm water
- Associated with large turbulent heat fluxes
- Strength defined by sea-air temperature difference

Papritz and Spengler (2017)

NERSC JA 11

Cold Air Outbreak and Turbulent heat flux

NERSC

- Strongest CAOs found near the ice edge
- CAOs near the ice edge account for up to 80% of the wintertime oceanic heat loss
 → CAOs play a key role in the formation of dense waters

Structural changes in the MIZ – 3 days interval

ERS-1 SAR image of a 500 km area along the MIZ in the Greenland Sea from 13 January 1992.

Same area imaged by ERS-1 on 16 January 1992.

Wind streaks in cloud structures and SAR roughness

NERSC W

11

Wind streaks and cloud structures

Broken sea ice greatly increases ocean-atmosphere exchanges in the Arctic

- 1. Broken ice allows increased:
- Heat fluxes
- Gas fluxes
- o Momentum transfer
- o Moisture transfer
- o Dense water formation
- o Mixing in the ocean

Ice breakup in the Beaufort Sea (NASA, Suomi NPP, VIIRS)

Ice breakup in February - March 2013 - observed

We need advanced ice physics to capture the heterogeneity of the ice cover

Heat fluxes from ocean to atmosphere

Courtecy Ron Kwok

Speed, shear and divergence & & Sea ice damage

Ice speed

Ice shearing rate

Ice divergence rate

Courtecy P. Rampal

Freeboard height estimation from Altimetry

NERSC

Satellite radar altimetry

- Radar transmits known pulse
- Echo is distorted as spherical wave-front intercepts surface
- Travel time is calculated by comparing common points on

Range = $\frac{1}{2}$ c * 2-way Travel time

$$f_c = f_i + h_s \Big(rac{c_v}{c_s} - 1 \Big) \hspace{1cm} h_i = rac{f_c
ho_w + h_s
ho_s}{
ho_w -
ho_i}$$

NERSC

 $\begin{array}{ll} f_{c \mbox{ and }} f_i \mbox{ is freeboard height, total and sea ice only;} & \rho_{s,w,i} \mbox{ is density for snow, water, ice;} \\ h_i \mbox{ is sea ice thickness;} & & \\ h_s \mbox{ is snow depth;} & & C_{v,s} \mbox{ is speed of light in vacuum and in snow} \end{array}$

Parameter Example

Sea ice thickness with uncertainty

CryoSat-2 March 2014

NERSC

11

Relevant Websites

1.https://en.wikipedia.org/wiki/Arctic_sea_ice_decline

2.<u>https://sites.uci.edu/zlabe/arctic-sea-ice-figures/</u>

3.<u>https://satellittdata.no/en/mosaic</u>

4.<u>https://www.mosaic-expedition.org/</u>

5.<u>http://arctic-roos.org</u> Arctic Regional Ocean Observing System

6.<u>http://nsidc.org</u> National Snow and Ice Data Center (NSIDC)

7.<u>http://osisaf.met.no</u>, Ocean and Sea Ice Satellite Application Facility (OSISAF – Eumetsat and MET.no))

Summary and Outlook

Sea Ice Deformation

- ✓ Sea ice thickness
- ✓ Sea ice rheology (ice mehanical behviour)
- ✓ Sea ice drift
- ✓ Sea ice flow size
- ✓ Sea ice ridging

NERSC

- ✓ Lead opening-closing
- ✓ Wave induced sea ice break-up present, but not fully detected
- ✓ Influence of tidal current still to clarify

Summary and Outlook

- ✓ EO in the Arctic is extremely important and valuable in the presence of global warming and climate change.
- ✓ Satellite sensor synergy is well practized.

NERSC TA

- Mesoscale structures in the MIZ is manifested by a mixture of processes and dynamics.
- ✓ Sea ice thickness are obtained from combined use of altimetry and passive microwaves at L-band (e.g. SMOS).
- ✓ Sea ice drift at various spatial scales are obtained from range of satellite sensing methods.
- ✓ Sea ice deformation feasible from SAR at 2-4 days interval
- ✓ Snow on sea ice still challenging ESA plans CRISTAL

Key present and future (not all approved) satellites fordetection and monitoirng of MIZ processes

Type of process	Dominant forcing	Satellite sensing
Upwelling	Wind driven shear in the Ekman current	Sentinel-1, Radarsat-2, Scatterometer, CFOSAT,
Mesoscale eddies	Current shear & frontal instabilities in the upper ocean	+ optical
Wind streaks	Unstable atmospheric boundary layer	HARMONY, CRISTAL,
Wave break-up	Wave propagation in ice	CMIR, SWOT*.
Internal waves (IW)	Tides, current fronts	SKIM-Light,
Ice jets, bands, filaments	Upper ocean	NISAR ROSE-L

NERSC TRA