Mesoscale processes and dynamics in the Marginal Ice Zone: Importance of satellite observations

Johnny A. Johannessen

with contribution from Anton Korosov, Pierre Rampal, Jeong-Won Park, Mohamed Babiker

Young Scientist school on "Atmosphere-Ocean-Ice System in the Arctic and its Investigation Using Satellite Data".

- **C O** > Background
- N → Satellite observations
- T → The Marginal Ice Zone
- **E** ► Mesoscale processes and variability
- N ≻ Summary

Т

NERSCO

11

The

Large scale ocean circulation in the high latitude and Arctic Ocean

Large scale sea ice drift – 16-18 NOV. 2019

Zone: Arctic Ocean / Image: Copyright (2019) EUMETSAT

http://osisaf.met.no/p/osisaf_hlprod_qlook.php?prod=LR-Drift&area=NH

Earth's Energy Imbalance – Global Warming

Warmer atmosphere Warmer Earth surface More heat uptake in the ocean More melting of the cryopshere Less ice sheet/glaciers/sea ice **Reduction in the albedo** Increased sea level

101043420

Sea ice – albedo feedback – Arctic Amplification

Ratio of the intensty of light reflected from the surface to the total incoming light from the sun.

Albedo for sea ice \approx 0.5-0.7

Solution Albedo for water ≈ 0.06

Summer enhanced sea ice loss is dominated by the albedo feedback. Snow-covered sea ice reflects most of the incident solar radiation. As the snow and ice melts the open ocean absorbs more solar radiation. In turn, this heat melts more ice, which then promotes more solar heating of the ocean, thus creating a positive melting feedback (Perovich et al. 2011).

A multi-modal approach, courtecy P. Rampal

Arctic Amplification is associated with the ice–albedo feedback:

- sea ice cover retreats more in summer;
- more release of heat to the atmosphere from the ocean during autumn freeze-up;
- thinner sea ice cover through the winter season;
- spring warm-up in the atmosphere near the sea ice surface;
- limit radiative cooling of the sea ice cover;
- increased humidity and cloud cover and hence warming of the lower atmosphere.

Passive Microwave Observations from SSMI

NERSC

http://www.arctic-roos.org/

Conceptual illustration of Air-Sea ice - Ocean interaction in the Arctic Ocean

NERSC

Satellite Observations in the Arctic Marginal Ice Zone

Quantity	Type of observation and variable	Key satellite sensors
Sea Ice	Concentration, type, area, thickness, age, drift, leads, polynias, iceberg, ridges,	Passive microwaves, SAR, Scatterometer, altimeter, optical
SST	Skin temperature <i>(upper micrometer and upper cm)</i>	Infrared radiometer, Passive microwave radiometer
SSS	Skin salinity <i>(upper 20 cm)</i>	Passive microwave radiometer valueable for thin ice detection
Surface Current	Geostrophic current, Ekman current, Stokes drift, range Doppler-based total surface current	Altimeter, SAR, scatterometer
Snow cover	Extent, thickness, Snow-water equivalent	SAR, altimeter, scatterometer
Sea level	In open water direct, <i>in presence of sea</i> <i>ice the freeboard must be removed</i>	Altimeter
Surface waves	Wavelength, wave spectra, SWH	SAR, optical, altimeter
Wind	Wind speed, streaks, vector wind	SAR, scatterometer, altimeter
Color	Chlorophyll, phytoplankton	Spectrometers
Sun glitter	Sunlight reflected from the surface	Spectrometers

The Electromagnetic spectrum

11

Typical Interaction for Electromagnetic Radiation in the MIZ

Interaction of the electromagnetic signals with the surface

MIZ processes

The marginal ice zone is known to undergo complex Ocean - Sea Ice - Atmosphere interactions that are manifested both in the structure of the ice edge, in the sea ice motion and in the open water. Among these are:

Type of process	Dominant forcing	Satellite sensing
Upwelling	Wind driven shear in the Ekman current	SAR, optical, PMW, Scatt
Mesoscale eddies	Current shear & frontal instabilities in the upper ocean	SAR, optical
Wind streaks	Unstable atmospheric boundary layer	SAR, optical
Wave break-up	Wave propagation in ice	SAR, optical
Internal waves (IW)	Tides, current fronts	SAR, optical
Ice jets, bands, filaments	Upper ocean	SAR, optical

UPWELLING IN THE MIZ

Stress atmosphere to water:

$$\tau_w = \rho_a C_w U^2$$

Stress atmosphere to sea ice:

 $\tau_{si} = \rho_a C_{si} U^2$

 τ_{si} H 2 τ_w

11

11

SIMULATED ICE EDGE UPWELLING USING A SEA ICE MODEL COUPLED WITH A 2-LAYER OCEAN MODEL

COURTECY RØED and O 'BRIEN, 1983

NERSC

11

Ice edge eddy with diameter of 30-40 km

Ice edge eddy with diameter of 30-40 km

Ice edge eddy with diameter of 30-40 km

Radarsat-2 SAR image from 30 October 2015

X - marks center of eddy

Courtecy Ben Holt JPL/NASA

SOLab, RSHU, St. Petersburg, 19-21 November, 2019

Ice edge bands

Wind streaks in cloud structures and SAR roughness

NERSC W

11

Structural changes in the MIZ – 3 days interval

ERS-1 SAR image of a 500 km area along the MIZ in the Greenland Sea from 13 January 1992.

Same area imaged by ERS-1 on 16 January 1992.

NERSC JA 11

Wind streaks and cloud structures

LEAD FRACTION AND SHEAR/DIV ZONES

Processes at the mesoscale to sub-mesoscale

NERSC

Sea Ice Deformation

Courtecy Ron Kwok

Speed, shear and divergence

Ice speed

Ice shearing rate

Ice divergence rate

Courtecy P. Rampal

On predicting sea ice breakup events and opening of coastal polynyas

February 2018 polynya opening north of Greenland / warm atmospheric event

NERSC

11

Sim

11

11

11

11

NDRSC (

11

NERSC

11

Freeboard height estimation from Altimetry

Satellite radar altimetry

- Radar transmits known pulse
- Echo is distorted as spherical wave-front intercepts surface
- Travel time is calculated by comparing common points on

Range = $\frac{1}{2}$ c * 2-way Travel time

 $\begin{array}{ll} f_{c \mbox{ and }} f_i \mbox{ is freeboard height, total and sea ice only; } \rho_{s,w,i} \mbox{ is density for snow, water, ice; } \\ h_i \mbox{ is sea ice thickness; } \\ h_s \mbox{ is snow depth; } & C_{v,s} \mbox{ is speed of light in vacuum and in snow } \end{array}$

 \mathbb{N}

Parameter Example

NERSC

11

Sea ice thickness with uncertainty

Relevant Websites

1.https://en.wikipedia.org/wiki/Arctic_sea_ice_decline

2.https://sites.uci.edu/zlabe/arctic-sea-ice-figures/

3.<u>https://satellittdata.no/en/mosaic</u>

- 4.<u>https://www.mosaic-expedition.org/</u>
- 5.<u>http://arctic-roos.org</u> Arctic Regional Ocean Observing System
- 6.<u>http://nsidc.org</u> National Snow and Ice Data Center (NSIDC)
- 7.<u>http://osisaf.met.no</u>, Ocean and Sea Ice Satellite Application Facility (OSISAF – Eumetsat and MET.no))

Summary and Outlook

- ✓ EO in the Arctic is extremely important and valuable in the presence of global warming and climate change.
- ✓ Satellite sensor synergy is well practized.

NERSC TA

- Mesoscale structures in the MIZ is manifested by a mixture of processes and dynamics.
- ✓ Sea ice thickness are obtained from combined use of altimetry and passive microwaves at L-band (e.g. SMOS).
- ✓ Sea ice drift at various spatial scales are obtained from range of satellite sensing methods.
- ✓ Sea ice deformation feasible from SAR at 2-4 days interval
- ✓ Snow on sea ice still challenging ESA plans CRISTAL

Summary and Outlook

Sea Ice Deformation

- ✓ Sea ice thickness
- ✓ Sea ice rheology (ice mehanical behviour)
- ✓ Sea ice drift
- ✓ Sea ice flow size
- ✓ Sea ice ridging

NERSC

- ✓ Lead opening-closing
- ✓ Wave induced sea ice break-up present, but not fully detected
- ✓ Influence of tidal current still to clarify

In the interior of the Arctic Ocean

NERSC T

ATL

neXtSIM for sea ice thickness studies

Olason, Rampal, Bouillon, in prep.

NERSC SC

Thin Sea Ice Retrievals from SMOS

Monthly SMOS sea ice thickness derived during freeze-up period October 2012-March 2013

Thin Sea Ice Retrievals

NERSC Star

11

Doppler based velocities and Pattern recognition

11

Assessment of sea ice drift from Doppler

20100101

Normalized radar backscatter (grayscale image), sea ice 0.6 edge (black line) 0.4 and Doppler 0.2 derived instantaneous 0.0 $_{-0.2}$ velocity (colored image, m/s). -0.4-0.6 The white area indicate good agreement between the pattern recogn. & SAR Doppler.

RIDES C

11

ASSESSMENT

Time averaged velocity fields from Doppler derived instantaneous velocity and pattern matching based mean velocity.

Sentinel-1 TOPS Doppler & Sea Ice Drift

Collocated (25 min time separation) RSAT-2 and S1a EW with estimated sea ice drift vectors overlaid. Area: North West of Svalbard

NERSC

S-1 intensity image (left), Doppler radial velocity (mid) and cross-correlation (CC) radial velocity (right).

T. Kræmer, H. Johnsen, C. Brekke, Engen G., "Comparing SAR-Based Short Time-Lag Cross Correlation and Doppler-Derived Sea Drift Velocities" IEEE Trans. Geoscience and Remote Sensing, Volume: 56 Issue: 3, ISSN: 1558-0644, DOI: 10.1109/TGRS.2017.2769222, 2017

Assessment of Doppler shift retrievals

Scatterplot of cross-correlation (RSAT-2 and S1a) radial velocity versus S1a Doppler radial velocity. Left: EW3, Mid: EW4, Right: EW5. All estimates are averaged to around 10km x 10km.

The main source of the bias comes from imperfect compensation for antenna DC bias over swaths.

NIDERSO

Orbital opportunities for satellite EO monitoring of the Arctic

SOLab, RSHU, St. Petersburg, 4-6 December, 2018

Envisat SAR image from the Fram Strait from 1 January 2010.

Sea ice drift vectors derived from combined pattern recognition and Doppler shift estimation.

Dragon 4 Advanced Training Course in Ocean & Coastal Remote Sensing Shenzhen University, P.R. China, 12 - 17 November 2018

$TB = (1 - C)TB_{W} + CTB_{ice}$

The Arctic has lost sea ice volume at a rate of 15.4% per decade since 1993. Accordingly, the Arctic Ocean freshwater content has increased and show a record high in 2016.

Unexpectedly, the sea ice extent in the Antarctic Ocean decreased dramatically during the last months of 2016

Dragon 4 Advanced Training Course in Ocean & Coastal Remote Sensing Shenzhen University, P.R. China, 12 - 17 November 2018

FREEBOARD HEIGHT & THICKNESS

Dragon 4 Advanced Training Course in Ocean & Coastal Remote Sensing Shenzhen University, P.R. China, 12 - 17 November 2018

Today → Energy imbalance → 0.5 -1 Wm⁻²

1.Table of Content

- Background Polar Region perspectives
- Essential climate variables
 - Sea Ice
 - Sea Level
 - Ice Sheet
 - > Glaciers
 - Ocean temperature
 - Ocean salinity
 - > Currents
- ESA Climate Change Initiative (http://cci.esa.int/)
- Summary

Scatterometer over sea ice

One fourth of the backscatter coefficients obtained from the sca. are generated over the polar oceans. In active microwave, sea-ice areas appear as isotropic surfaces. Their signatures are not related to the azimuthal angle dependence but to the incidence angle of the observation and the radar backscattering varies considerably with the incidence angle.

NIERS

SOLab, RSHU, St. Petersburg, 4-6 December, 2018

Waves in the ice on 5 October 2014 from S1 (courtesy SWARP Project)

Waves in the ice (courtesy SWARP Project)

The Electromagnetic Spectrum

NERSC

11

SOLab, RSHU, St. Petersburg, 4-6 December, 2018

The regions of the Arctic Ocean and surroudning seas

- 1: Barents Sea Section
- 2: Kara Sea Section
- 3: Greenland Sea Section
- 4: Canadian Arctic Section
- 5: Baffin Bay Section
- 6: Beaufort Sea Section
- 7: Chukchi Sea Section
- 8: Bering Sea Section
- 9: East Siberian Sea Section
- 10: Laptev Sea Sectio

Satellite Observations of the Cryosphere Global Climate Indicators

11

Antenna size, wavelength, beam width and coverage

NDRSC (

11

Scatterometer over sea ice

From freeboard to thickness

Sea Ice Thickness

NERSC

11

Sea Ice Thickness

NERSC JA

11

