Лекция 2

Получение и использование спутниковых данных о цвете океана

Копелевич Олег Викторович, зав. Лаб. оптики океана Института океанологии РАН, д. ф.-м. н.

Достоинства сканеров цвета

- Только излучение видимой области спектра способно проходить с малыми потерями(и выходить обратно) через поверхность раздела атмосфера-океан.
- Излучение, вышедшее из водной толщи, содержит информацию о характеристиках подповерхностного слоя океана и процессах, происходящих в этом слое.
- Спутниковые сканеры цвета, наряду с ИК-радиометрами, наиболее эффективны с экономической точки зрения.
- Данные спутниковых сканеров цвета, также как ИК радиометров, можно совершенно бесплатно получать через Интернет в течение суток после измерений.
- Полоса обзора большинства спутниковых сканеров цвета составляет порядка 1500 км при пространственном разрешении 250 м 1 км.

Недостаток: облачность – непреодолимое препятствие.

CZCS Coastal Zone Colour Scanner

NASA (CIIIA) Спутник: Nimbus-7 (США) Период работы: 24/10/78 - 22/06/86 Ширина полосы: 1556 км Пространственное разрешение: 825 м Число каналов 6 Спектральный диапазон:

433-12500 нм

Muin CZCS nozbonus: 1) Orepmund Kyp Fipuopuisieigness nayantix zagat, que persense potrophis ganne o ybetter bog; 2) copopuyupolame Kredobanus K Sygyujun c'ny mukothe gammukale ybeina. 3) сорормулировать требование к обесполению спутниковых измерений и использованию стутниковых данных.

#0	1024 – 1064 nm	n width	30 nm					
		ible width 40 nm)		Tractor				
# 1	855 – 890 nm	width	20 nm		греос	вания		
(possible width 35 nm)			i nm)					
#2	744 – 757 nm	width	14 nm	Пвета				
#3	704 – 713 nm	width	10 nm		цвота			
#4	550 – 565 nm	width	10 nm					
#5	485 – 495 nm	width	10 nm					
#6	438 – 448 nm	width	10 nm					
#7	407 – 417 nm	width	10 nm	C1	= Channels	1, 2,	4, 5	
				C2	e = Channels	1, 2,	4, 5, 6	
Μ	linimum require	ments fo	r	СЗ	= Channels	1, 2,	4, 5, 6, 7	
ai S	ensor for the Operational O	cean-Co ben Ocea	an.	C4	= Channels	1, 2, 3	, 4, 5, 6	
Reports of the International Ocean-Colour Coordinating Group, No.1. IOCCG, Dartmouth, Canada, 46 pp. 1998.			C5	C5 = Channels0, 1, 2, 4, 5, 6 $C6 = Channels$ 1, 2, 3, 4, 5, 6, 7 $C7 = Channels$ 0, 1, 2, 3, + n channels in				
			C6					
			C7					
						the visible	e part of the spectrum	

Основные параметры и характеристики спутникового сканера цвета Sea WiFS

Спектральные каналы прибора

Радиометрические характеристики

№ канала	Спектральный диапазон, нм (по полуширине)	Яркость насыщения, мВт/см²•мкм•ср	Типичная яркость, мВт/см²•мкм•ср	Отношение сигнал/шум (SNR)
1	402-422	13.63	9.10	499
2	433-453	13.25	8.41	674
3	480-500	10.50	6.56	667
4	500-520	9.08	5.64	640
5	545-565	7.44	4.57	596
6	660-680	4.20	2.46	442
7	745-785	3.00	1.61	455
8	845-885	2.13	1.09	467

Точность измерений

Абсолютная ошибка измерений	<5
Относительная ошибка измерений	<1
Ошибка за счет поляризации	<2
Разрешение в надир	1.1

<5% для каждого канала <1% для каждого канала <2% для всех углов 1.1км LAC; 4.5 км GAC Спутниковый сканер цвета SeaWiFS на спутнике SeaStar (OrvView) (август 1997 – декабрь 2011)

Figure 2. SeaStar satellite with its solar panels deployed.

Спутниковый сканер цвета SeaWiFS

Необходимые условия получения качественных геофизических продуктов:

- 1. Выполнение требований к характеристикам спектральных каналов спутникового датчика;
- 2. Обеспечение радиометрической точности измерений не хуже 5% для определения абсолютных значений и 1% для относительных изменений;
- 3. Контроль калибровки спутникового датчика в период работы на орбите посредством бортовых и приводных измерений;
- 4. Разработка алгоритмов атмосферной коррекции и биооптических алгоритмов, адаптированных к особенностям прибора и его техническим характеристикам;
- Обеспечение необходимой дополнительной информации для обработки спутниковых данных (данные о содержании озона, атмосферном давлении, относительной влажности, скорости ветра);
- Верификация алгоритмов по данным натурных измерений для различных гидрометеорологических и океанологических условий; оценка точности рассчитываемых геофизических продуктов.

Организация получения, обработки и верификации данных

Fig. 2. SeaWiFS Project schematic showing major elements of shore and at-sea data processing.

Оптический буй МОВҮ для контроля калибровки Спутникового датчика и верификации алгоритмов

Местоположение МОВУ:

13 морских миль от острова Ланаи на глубине 1200 м.

Кружок на врезке показывает «блуждание» буя относительно точки его закрепления.

Действующие спутниковые сканеры цвета (http://www.ioccg.org/sensors_ioccg.html)

Сканер	Агенство	Спутник	Дата запуска	Полоса обзора (км)	Разрешение (м)	Число каналов	Спектр. диапазон (нм)	Орбита
COCTSCZI	CNSA (Китай)	НҮ-1В (Китай)	11/04/2007	2400 500	1100 250	10 4	402 - 12,500 433 - 695	полярная
<u>GOCI</u>	KARI /KORDI (Южная Корея)	COMS	26/06/10	2500	500	8	400-885	геостацио -нарная
<u>HICO</u>	ONR-DOD (США)	Японский эксперим. модуль (JEM-EF)	18/09/09	50	100	124	380 - 1000	51.6°
MERSI	CNSA (Китай)	FY-3А (Китай)	27/05/2008	2400	250/1000	20	402-2155	полярная
MERSI	CNSA (Китай)	FY-3B (Китай)	05/11/2010	2400	250/1000	20	402-2155	полярная
<u>MODIS-</u> <u>Aqua</u>	NASA (CIIIA)	Aqua (EOS-PM1)	04/05/02	2330	1000	36	405-14,385	полярн ая
<u>MODIS-</u> <u>Terra</u>	NASA (CША)	Terra (США)	18/12/99	2330	1000	36	405-14,385	полярн ая
<u>OCM</u>	ISRO (Индия)	IRS-P4 (Индия)	26/05/99	1420	350	8	402-885	полярн ая
<u>OCM-2</u>	ISRO (Индия)	Oceansat-2 (Индия)	23/09/09	1420	360/4000	8	400 - 900	полярн ая
POLDER- <u>3</u>	CNES (Франция)	Parasol (Франция)	18/12/04	2100	6000	9	443-1020	полярн ая
<u>VIIRS</u>	NOAA /NASA (CIIIA)	NPP	28 Oct. 2011	3000	370 / 740	22	402 - 11,800	полярная

Спутниковые системы для наблюдения Земли

Terra – 18 Dec 1999 – NASA (USA);

ENVISAT – 1 Mar 2002 – ESA (Europe);

Aqua – 4 May 2002 – NASA (USA)

Aqua carries six instruments in a near-polar low-Earth orbit.

Moderate-Resolution Imaging Spectroradiometer (MODIS) - an ocean color scanner and an IR radiometer .

Cloud's and Earth's Radiant Energy System (CERES) - a 3-channel radiometer measuring reflected solar radiation in the 0.3-5 μ m wavelength band, emitted terrestrial radiation in the 8-12 μ m band, and total radiation from 0.3 μ m to beyond 100 μ m. These data are being used to measure the Earth's total thermal radiation budget, and, in combination with MODIS data, detailed information about clouds.

Atmospheric Infrared Sounder (AIRS), Advanced Microwave Sounding Unit (AMSU-A), Humidity Sounder for Brazil (HSB). AIRS/AMSU-A/HSB triplet is centered on measuring accurate temperature and humidity profiles throughout the atmosphere.

Advanced Microwave Scanning Radiometer for EOS (AMSR-E) – a passive microwave radiometer. Measures precipitation rate, cloud water, water vapor, sea surface winds, sea surface temperature, ice, snow, and soil moisture.

Спектральные каналы прибора MODIS

Предназначение Предназначение	№ канала	Ширина канала	- Спектральная яркость ²	Требуемое отношение сигнал/шум ³
Суша/Облака/Границы аэрозоля	1	620 - 670	21.8	128
	2	841 - 876	24.7	201
Суша/Облака/Свойства аэрозоля	3	459 - 479	35.3	243
	4	545 - 565	29.0	228
	5	1230 - 1250	5.4	74
	6	1628 - 1652	7.3	275
	7	2105 - 2155	1.0	110
Цвет океана/фитопланктон/	8	405 - 420	44.9	880
Биогеохимия	9	438 - 448	41.9	838
	10	483 - 493	32.1	802
	11	526 - 536	27.9	754
	12	546 - 556	21.0	750
	13	662 - 672	9.5	910
	14	673 - 683	8.7	1087
	15	743 - 753	10.2	586
	16	862 - 877	6.2	516

Спутниковый сканер цвета MERIS

Канал №	Центр канала (нм)	Ширина канала (нм)	Направленность
1	412.5	10	Желтое вещество и поглощение детритом
2	442.5	10	Максимум поглощения хлорофиллом
3	490	10	Хлорофилл и другие пигменты
4	510	10	Взвешенное вещество, «красные приливы»
5	560	10	Минимум поглощения хлорофиллом
6	620	10	Взвешенное вещество
7	665	10	Поглощение хлорофиллом и флу-опорн.
8	681.25	7.5	Максимум флуоресценции хлорофилла
9	708.75	10	Флу-опорн. Атмосферная коррекция
10	753.75	7.5	Растительность суши, облака
11	760.625	3.75	Полоса поглощения кислорода
12	778.75	15	Атмосферная коррекция
13	865	20	Растительномть суши, водяной пар-опорн.
14	885	10	Атмосферная коррекция
15	900	10	Водяной пар, суша

Первый геостационарный сканер цвета GOCI

запущен на спутнике COMS 27 июня 2010 г. с космодрома Куру (Французская Гвиана)

Охватываемая площадь наблюдений: 2500 x 2500 км;

Пространственное разрешение: 500 м;

Частота наблюдений: ежечасно в светлое время суток.

8 спектральных каналов в видимой и ближней инфракрасной области спектра.

Планируемые спутниковые сканеры цвета (http://www.ioccg.org/sensors_ioccg.html)

Сканер	Агенство	Спутник	Год запуска	Полоса обзора (км)	Разрешение (м)	Число каналов	Спектр. диапазон (нм)	Орбита
OLCI	ESA (Европа)	GMES-Sentinel-3A (ESA/EUMETSAT)	2014	1270	300/1200	21	400 - 1020	Полярная
HSI	DLR (Германия)	EnMAP	2015	30	30	228	420 - 2450	Полярная
S-GLI	ЈАХА (Япония)	GCOM-С (Япония)	2014	1150 - 1400	250/1000	19	375 - 12,500	Полярная
COCTS CZI	CNSA (Япония)	НҮ-1Е/F (Китай)	2017	2900 1000	1100 250	10 4	402-12500 433-885	Полярная
Много- спектра -льная оптич. камера	INPE (Бразилия)/ CONAE (Аргентина)	SABIA-MAR	2015	200/2200	200/1100	16	380 - 11,800	Полярная
Скане р цвета прибр . зоны	Роскосмос (Россия)	Метеор-3М №3	2015	3000 800	1000 80	8 6	402-885 410-786	Полярная
VIIRS	NOAA / NASA	JPSS-1 (CIIIA)	2015	3000	370 / 740	22	402 - 11,800	Полярная
OLCI	ESA (Европа)	GMES-Sentinel 3B (ESA/EUMETSAT)	2017	1265	260	21	390 - 1040	Полярная
GOCI-II	KARI/ KORDI	КМGS-В (Южная Корея)	2017	1200x 1500	250/1000	13	412 - 1240	Геостациона рная

Биооптические параметры, определяемые по данным сканера цвета

Параметр	Использование				
Спектральный коэффициент яркости водной толщи	Характеризует пространственно-временную изменчивость свойств поверхностного слоя				
Оптическая толщина атмосферного аэрозоля	Характеризует содержание аэрозоля в атмосфере, влияет на пропускание солнечной и уходящей радиации, микрофизику облаков.				
Концентрация хлорофилла	Характеризует биомассу фитопланктона; ключевая характеристика для расчета первичной биопродукции				
Показатель диффузного ослабления подводной облученности	Ключевая характеристика для расчета светового режима в водной толще, альбедо океана и объемного поглощения солнечного излучения в поверхностном слое				
Показатель поглощения окрашенного органического вещества	Определяет поглощение света в воде; характеризует содержание окрашенной органики и качество воды в прибрежной зоне; один из параметров мониторинга				
Показатель рассеяния назад взвешенными частицами	Определяет альбедо водной толщи; характеризует содержание взвеси в воде; один из параметров мониторинга				

Сезонные и межгодовые изменения биооптических характеристик морей России по данным спутниковых сканеров цвета

Среднемесячные распределения биооптических характеристик, таких как концентрации хлорофилла и взвеси, показатели поглощения окрашенным органическим веществом и рассеяния назад взвешенными частицами, для вод Баренцева, Белого, Черного и Каспийского морей (более 1200 цветных карт) рассчитаны по спутниковым данным 1998-2010 гг. посредством региональных алгоритмов, выведенных на основе данных натурных измерений, с оценками их точности. Разработана специальная процедура для «стыковки» данных спутниковых сканеров цвета SeaWiFS и MODIS-Aqua, необходимая для продолжения долговременной серии данных наблюдений, построенной до этого по данным сканера SeaWiFS.

Сезонные изменения пространственных распределений показателя рассеяния назад *b*_{bp} в Черном море по данным сканеров цвета

Изображение MODIS-Aqua 12 June 2004, построенное в видимом цвете

Пространственные распределения показателя рассения назад $b_{\rm bp}$ и хлорофилла *Chl*

b_{bp}, m⁻¹

Chl, mg/l

Экспедиционные исследования в северо-восточной части Черного моря

С 2004 г. ИО РАН проводит в восточной части моря в июне регулярные экспедиции, в которых измеряются оптические характеристики воды и выполняются прямые определения концентраций взвеси и характеристик фитопланктона. Слева показан плавающий спектрорадиометр – основной прибор для разработки и верификации спутниковых алгоритмов. Он измеряет спектральную облученность поверхности и яркость выходящего из воды излучения под поверхностью, чтобы избежать влияние солнечных бликов.

Кокколитофориды

Α

Черноморские кокколитофориды Emiliania huxleyi

А – клетки кокколитофорид, покрытые кокколитами;

Б – отделившиеся кокколиты.

Кокколитофоридное цветение в Черном море в 2012 г.

Чрезвычайно интенсивное и продолжительное цветение наблюдалось прошедшим летом. Изображение со сканера MODIS-Aqua в видимом цвете 15 июля 2012 г.

Пространственные распределения показателя рассеяния назад b_{bp} (слева) и концентрации коккоитофорид N_{coc} (right), построенные посредством нового алгоритма по данным сканера MODIS-Aqua/

Кокколитофоридное цветение в Баренцевом море

В августе 2004г. удалось получить прямое подтверждение кокколитофоридного цветения в Баренцевом море путем исследования проб, отобранных в рейсе НИС «Профессор Штокман», в точках повышенных значений показателя рассеяния bbp по спутниковым данным. По данным прямых определений концентрации кокколитофорид, выполненных Т. Ратьковой, их концентрация (E. huxleyi) превышала 10⁶ и даже 10⁷ кл/л. Обнаружено соответствие зон кокколитофоридного цветения с ареалом распространения теплых вод Норвежского цветения.

Распределение показателя рассеяния взвесью по данным сканера цвета SeaWiFS в августе 2004г.

Кокколитофоридные цветения в Баренцевом море

0.03 0.02 0.01 0.005 0.002 land no data

Пространственные распределения значений показателя рассеяния назад взвешенными частицами (bbp, м⁻¹) в западной части Баренцевого моря, осредненные за периоды 26 июля-14 августа 2004 г. (слева) и 24 августа-24 сентября 2009 г. (справа) по данным спутникового сканера цвета MODIS-Aqua. Цифры на рисунках – номера точек отбора проб

Влияние кокколитофоридных цветений на альбедо водной толщи

а) реальные условия

б) море, заполненное чистой водой

Среднемесячные значения альбедо водной толщи для Баренцева моря в августе 2000 г. по данным сканера цвета SeaWiFS

Среднемесячное распределение поглощенной ФАР в слое 2-3 м в Баренцевом и Белом морях в августе 2000 г. (представлены отношения E_{abs}/E_{sur})

Реальное море

Гипотетическое море, заполненное чистой водой

Изменение среднемесячных величин концентрации хлорофилла *Chl*, мг·м⁻³ с января 1998 по декабрь 2005 гг. в южном Каспии.

Среднемесячные распределения концентрации хлорофилла в Каспийском море в сентябре 1999, 2000, 2001 и 2005 гг.

54

Мезомасштабная динамика вод по данным ИК-радиометров и сканеров цвета

Распределения поверхностной температуры (слева) и концентрации хлорофилла в западной части Атлантического океана по данным сканера MODIS на ИСЗ «Aqua» 18 апреля 2005 г.

Спутниковый мониторинг нефтяного загрязнения в Мексиканском заливе (© ИКИ РАН, 2010, Отдел "Исследование Земли из космоса")

29 апреля 2010 г.

ASAR Envisat, 16:04 UTC. Мода WSM, вертикальная поляризация излучения и приема. Разрешение 75 м. MERIS Envisat (композит 7, 5, 2 каналов), 16:04 UTC. Разрешение 260 м. Зона солнечного блика.

MODIS Terra (композит 1, 4, 3 каналов). 6:50 UTC. Разрешение 250 м. Зона солнечного блика.

Комплексная система наблюдений за состоянием экосистем и биогеохимическими изменениями

(Claustre et al. GUIDELINES TOWARDS AN INTEGRATED OCEAN OBSERVATION SYSTEM FOR ECOSYSTEMS AND BIOGEOCHEMICAL CYCLES. Proceedings of the "OceanObs'2009": Sustained Ocean Observation and Information for Society". Venice, Italy, 21-25 Sep. 2009)

Наиболее эффективная система мониторинга основана на комплексном использовании данных, получаемыми различными спутниковыми датчиками, и данных натурных измерений, с использованием комплексных расчетных моделей, ассимилирующих все доступные данные.

Комплексная система наблюдений за состоянием экосистем и биогеохимическими изменениями должна включать:

- Спутниковые наблюдения.
- Натурные измерения с использованием различных платформ: подводные планеры (gliders); поплавки (floats); животные-носители (animal-borne instruments); заякоренные буи (mooring); суда.
- Усовершенствованные численные модели.