Satellite Oceanography: an integrated perspective



help reveal and model unknow unknowns from all
available multi-modal satellite ocean remote sensing
measurements ?

Some Earth Observation Challenges:

Upper vertical motions i.e. 3D dynamics (e.g. including time evolution) of
the upper ocean, Mesoscale and submesoscale circulation as key to
control the vertical ocean pump and its impact on energy transport and
biogeochemical cycles

Climate modelling due to these vast and diverse scales of fluid motions:
in the upper ocean, horizontal scales as big as basins and as small as cm-
mm (capillary-gravity surface waves) contribute non-negligibly to air-sea
exchanges and climate, and dynamics of scales of less than 30 km, is
characterized by departures from the Earth's rotation constraint, i.e
ageostrophic motions and strong impact of wind/wave transient
forcings.



Problem: introduction of new regimes for heat, salinity
and chemistry distribution which threaten the
sustainability of life in the sea and increase the

frequency of extreme events !
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Future goals are to contribute/accelerate to new
skills/discoveries to help reveal and model unknow
unknowns from all available multi-modal satellite

ocean remote sensing measurements ?

Computational simulations have a limiting “irreducible imprecision”
compared to measured quantities in the turbulent regimes of the
upper ocean. This limiting feature explains the observed
irreproducibility among different model schemes which are supposed
to be solving the same problem. The imprecision of simulations is due
tfo the variety of independent selections of different numerical
algorithms, model parameterizations, and representations of
couplings among the different processes.




70% Earth’ s surface covered by
water

“If | were to choose a single phrase to

characterize the first century of modern

oceanography, it would be a century of under-
. sampling. ”

Walter Munk, Woods Hole Oceanographic Institute,
2000 o s




CURRENT STATUS: DROGUED AND UNDROGUED DRIFTERS
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http://argo.ucsd.edu/statusbig.gif

Three Pil I.ars. of E SAEarTh Observation

THE ESA EARTH OBSERVATION PROGRAMME
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Goal is a hierarchical system that integrates data and

models (and can also be used to design observing systems)
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Figure 1. Future role of wave models as an essential coupling
component for ocean-atmosphere-carbon-cycle modets de-
veloped in the context ot the World Climate and Global Change

programs.
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Ocean remote sensing: a privileged view
Spatially detailed

— Spatial resolution from meters to Kms
— A synoptic picture that is 100 km - 10 000 km wide

Regularly repeated

— Reuvisit intervals between 30 min. and 35 days
— Continuously repeated over years to decades

Global coverage
— Satellites see the parts where ships rarely go
— Single-sensor consistency - no intercalibration uncertainties

Measures parameters that cannot be observed in situ
— Surface roughness at short length scales (2-50 cm)
— Surface slope (a few cm over 100s of kilometres)
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' Band name P | L I S
‘o.ég 1.55
Frequency 03GHz 1.0 3.0 10 30 100 GHz
Wavelength 100 cm 30 0.3cm

Table 2.1. Band letter designations used in microwave remote
sensing.

Band Frequency (GHZ) Wavelength

0.225-0.390 76.9-133 cm
L 0.390-1.55 19.35-76.9 cm
S 1.55-4.20 7.14-19.35cm

C 4.20-5.75 5.22-7.14cm
X 5.75-10.9 2.75-5.22 cm
K, 10.9-22.0 1.36-2.75cm
K, 22.0 36.0 8.33-13.6 mm
Q 3.0 46.0 6.52-8.33 mm

460 560 536 6.52mm
560 100 3.0 5.36 mm
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Geostationary sensors
typically offer a revisit
interval of less than 30 min
and spatial resolution of 1
to 5 km.

*The polar orbiting sensor
cover the whole Earth ina
single day if it is the swath
at least 2700 km.

» Each point on the Earth
surface is viewed once
from descending track and
once from ascending track.

Ground track of a typical near-polar, low-Earth
orbit, showing all the descending

passes for one day and one ascending pass
(dashed).
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Schematic illustrating the different remote-sensing methods and
classes of sensors used in satellite oceanography, along with their
applications (from Robinson, 2004).




) Foremost, to understand thé sallite S
capability (sensor physics and spatio-temporal sampling) ->A
consistent approach (T. Elfouhaily, 1997)
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Signatures of 3 co-evolving 2015 major Hurricanes from 22 Aug
to 9 Sep in the East and Central tropical Pacific as seen from
SMOS, SMAP and AMSR-2 observations (beyond others)

SMOS 2015 AUG 29
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Sub-mesoscale (10 km eddies) and high resolution
radar sea surface roughness variations
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Sensor Geometry: the SAR case
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Sensor Geomeiry: the SAR case
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Cornwall, UK:
- wind gusts from
land to sea from

Oceanic and
atmospheric
process
fingerprints on
the sea surface
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Satellite synthetic aperture radar
(SAR)
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Schematic illustration of the Langmuir circulation (first
described by Langmuir, 1938). The separation scale of the
convergence zones are typically 10-100 m
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Satellite synthetic aperture radar
(SAR)
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Ocean-Atmosphere
Interactions
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Satellite synthetic aperture radar
(SAR)







> 4 =
( =XSAT T .,

“‘/‘_‘[fl"“("lf)(

e \

SA
Q-

{

¢

009
A
i ».‘




=TTE
e S o » P
e - "ﬁi"' ok

P g
- ¢

Intense deformation field at oceanic front
inferred from directional sea surface roughness

observations

2016-02-10 00:00:00 Drifters and Walton Smith trajectory
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M. SPOONER , SUR LA LUMIERE DES ONDES DE LA MER. 331

LETTRE XX

De M. Jean Srooxen,
A. B. 5. Joux’s Camsrince.

Génes 1.*F Mai 18a2.

Vors m’'avez fait I'honneur, M. le Baron, de me
demander un extrait du mémoire que j'ai pris la li-
bert¢ de vous communiquer relativement a un phéno-
méne Jumineux qui se montre sur la mer lorsque le
soleil ou la June y donuent dessus (*), et que vous voulez
avoir la bonté d'insérer dans votre Correspondance

L’équation en question est:

a® 2c0s. Za 2. c08>J 4= acos*J .a.c0s. Z

e R V‘W -+ c08.> Z = Y ¥z,

2c08.Jsin.Z.x

Va2 4 ) '

Par la quatriéme observation.

2 == . 0005343 — 1. 928116} < 0724429

A .0000013 4. 0005593 - . 0585262 . 0590868

De-la, log. A == 1"1.9557479.5 == log. cosin. de 25°
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VOLUME 44, NUMBER 11 NOVEMBER, 1954

Measurement of the Roughness of the Sea Surface from Photographs
of the Sun’s Glitter

CreariEs Cox AND WALTER MUNK
Seripps Institution of Oceanography,* La Jolla, California
(Received April 28, 1954)
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Fic. 1. Glitter patterns photographed by aerial camera pointing vertically downward at 5013.1' elevation of ¢=70".
The superimposed grids consist of lines of constant slope azimuth e (radial) drawn for every 30°, and of constant tilt 8
(closed) for every 5° Grids have been translated and rotated to allow for roll, pitch, and yaw of plane. Shadow of plane
can barely be seen along a= 180° within white cross. White arrow shows wind direction, Left: water surface covered b

natural slick, wind 1.8 m sec™?, rms tilt o=0.0022. Right: clean surface, wind 8.6 m sec™, =0.043. The vessel Reverie is
within white circle.
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Fig. 13. Mean square slope components and their sum as functions of the wind speed W meas-
ured 41 ft. above sea level. The plot includes all analyzed data for clean sea surfaces (open circles)
and slick surfaces (solid circles). Continuous lines are regression lines for clean surfaces; dashed
lines for slick surfaces.







Gulf Stream roughness changes
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New Era - Nanosatellites - CubeSat

A CubeSat is a type of miniaturized satellite for space
research that usually has a volume of exactly 10 cm cube, and

mass of no more than 1.33 kilograms.



http://en.wikipedia.org/wiki/Miniaturized_satellite
http://en.wikipedia.org/wiki/Space_research
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Numerous questions and challenges

Some of to better assess the existing
pressures on the marine environment (e.g. overfishing, pollution,
habitat destruction, ...) potentially leading to increased risks to global
food security, economic prosperity, ...

Evolution of coastal ocean systems including the interactions with land in
response to natural and human-induced environmental perturbations

Mesoscale and submesoscale circulation and the role of the vertical
ocean pump and its impact on energy transport and biogeochemical
cycles

Response of the marine ecosystem and associated ecosystem services to
natural and anthropogenic changes,

Physical and biogeochemical air/sea interaction processes on different
spatio-temporal scales and their fundamental role in weather and
climate

Sea level changes from global to coastal scales and from days (e.g. storm
surges) to centuries (e.g. climate change)



\Z12A%

lfremer.

ENVISAT MERIS Southern
7 s -~ Ocean Bloom
' - 13/01/ 2012

,
WG




Numerous questions and challenges :

How can we map the distribution of marine plastic Debris?
Has the Agulhas current strengthened in the last 5 years?

Is the surface circulation of the Black Sea and in the Mediterranean
Sea stable?

How is the Arctic Ocean changing ?

How is marine biodiversity changing, locally, regionally, globally ?
What is the extent of ocean acidification ?

Are western boundary currents changing, the Gulf Stream ?
How can ship routing be optimised ?

Why and where is regional sea level changing?

How are our coastal regions changing?

How can we map estuary systems from space?
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eore and used, limited to aing
fruits’, and necessity to better optimize
analysis to reveal multi-scale dynamics

® ... Synergy between high and medium resolution observations to

reveal mean states and trends, near-surface ocean-atmosphere
dynamics, local and non-local interactions, convergence/divergence
surface fronts and numerous roughness contrasts

Atmospheric and Oceanic observations generally produce high quality
data, but it is often too sparse (many gaps where information is
missing, and/or often too local in both space and time)

How can we use observed data in combination with the physical
knowledge of stochastic processes in nonlinear dynamical systems to
estimate and model those effects on the variability of
computationally resolvable scales of motion that are caused by the
small, rapid, unresolvable scales of fluid motion that upscaling in
data assimilation leaves out?
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Iceberg detection &
climatolog

Analysis of altimeter wave forms :
ERS 1 & 2, Envisat, Jason 1 & 2, Cryosat, AltiKa (12 TB)

Disposing of a sandbox with
permanent access to all data and
processing power greatly ease
bridging the gap between initial idea
and full demonstration / long term
assessment
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Global model:
~100 km resolution

Cloud scales: ~10-100 m
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ENVISAT/AATSR (1 km, 14-15 orbites/jour)

Multi-satellite product
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High resolution daily product 2006-present, 2 km
resolution

projet ESA Medspiration
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High-resolution satellite ocean sensing

From low-resolution .............  to high-resolution

v
o

Low-resolution: ~25km (0.25°) eg, High-resolution: 1-4km (0.01°) or < 1km
Altimetry (SSH), Radiometer (SST SAR, Infrared (SST), Ocean Colour

Key issue
How to deliver daily high-resolution geophysical field at regional/global
scale from the the irregular space-time sampling of high-resolution sensors
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multi-scale/museor' databases

HR observations are irregularly sampled in space and time. But ... 1)
low resolution observations are generally available and 2) we should

learn a lot from past joint HR/LR observations.

Latitude
Latitude

2°E 3°E 4°E 5°E 6°E
Longitude

Longitude
0 5 10 1% 20 a 5 W‘D 1‘5 20

New HR
observation

Database of past New LR
LR/HR observations observation

Key objective: learning new multi-scale/multi-modal representations of
ocean dynamics from multi-sensor remote sensing archives




Mult:-scale/mult:-modal r'epr'esentat:ons of ocean

dynamics from remote sensing archives
Wind fields:

SAR Data ECMWF Model HR Emulation
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Learning ECMWF -t0-SAR transfer functions
for HR wind field emulation
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SQG-like  assumption:
local relationships
between local SST
patches and sea surface
currents

Learning from joint
SST-SSH observations

Towards high-resolution sea surface currents
from a joint SST-SSH analysis
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=2 Tracer mixing depends on KE spectrum .

—¥re

E(k)~ k*
 Simple proxy model: surface quasigeostrophic turbulence

 Dynamics driven by surface density anomalies (zero
interior PV)

Geostrophic
turbulence |

surface QG
turbulence




stirring and mixing : interplay ana
interactions







Small scales / mesoscale
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Lagrangian advection to dynamically interpolate large-

scale tracer (sea surface temperature field, left) onto a

high-resolution product (right). Particle trajectories

computed using altimetry-derived velocities (AVISO,
weekly 1/3 ° ) with 3 hours time steps







Observed data in combination with the
physical knowledge of stochastic processes
in nonlinear dynamical systems
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Small scales / mesoscale
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The blended satellite products allow to estimate the impact of surface currents on
the biogeochemical transport, on the dispersion of pollutants and oil spills

Forecast of oil spill dispersion in the Gulf of Mexico on 25 june 2010: red and blue show regions of
strong oil dispersion within 3 days. This diagnosis, based on altimetric data, compared well with
what was observed (Mezic et al, Science, 2010).

However these satellite datasets (altimetric and microwave data)
cannot capture ocean dynamics at scales smaller than 100 km
because of the resolution (or/and noise level).
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Tracking apex marine predator movements in a
dynamic ocean

B. A. Block', L. D. Jonsen?, S.I. Jorgensen', A. J. Winship?, S. A. Shaffer®, S. J. Bograd®, E. L. Hazen®, D. G. Foley*, G. A. Breed™®,
A.-L. Harrison®, J. E. Ganong', A. Swithenbank®, M. Castleton’, H. Dewar®, B. R. Mate’, G. L. Shillinger’, K. M. Schaefer?®,
S. R. Benson®, M. ]. Weise®, R. W. Henry® & D. P. Costa®
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é Eastern Pacific Freshpool & 3D monitoring of the pool
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Synergy SSS (SMOS+AMSR-E)+Altimeter-derived surface currents
+SST (GHRSST)+ Ocean Colour (CDOM MERIS/MODIS)

SS8S SMOS+ Altimeter currents 30/05

06/01 07/01 08/01 09/01 10/01 11/01 12/01
Date

Lagrangian Optical-Physical properties
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FIG.2 The number of 1950 through 2010 “best track” TC per one degree square (smoothed by a 3° x
3° block average) (a) that evolves as Cat 4-5 somewhere along their path and (b) that intensified
locally to Cat 4-5. The black curve is showing the historical extent of the Amazon-Orinoco river plume

during the hurricane peak season (August to October).







Semi-empirical model
-Self-similar breaker-scale distribution

-Foam coverage and thickness
- wavelength sensitivity
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Signal
Resolution

Assets

Limitations

Intensity of backscatter signal (NRCS)
1 km

Dual polarization:

-Co-pol = less noise, sensitive to wind
direction

-Cross-pol = no saturation at high
winds

High resolution

Not a large coverage, reduced
opportunity to get acquisitions over
TCs

Impacts of rain and waves exist
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VH 2017/09/07
From 10:29:51 to 10:31:10

Ocean Surface Wind : C-Band Synthetic Aperture Rada

Thanks to its high resolution C-Band SAR can be used to
estimate Tropical Cyclones parameters, including those
related to the inner core: radius of maximum wind speed,
maximum wind speed, the inner core enthropy

This is complementary to radiometer large coverage

VH NRCS [dB]
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Upper ocean responses to extreme wind forcing by
tropical cyclones remains a central problem in physical
oceanography

Parameterization of wind forcing at high-wind speeds is
still a matter of debate and active research

To accurately model air-sea coupled processes, it is of
central importance to quantify how efficiently surface
winds and waves, within storm cores, increase the
momentum of surface currents

Energy transfer to upper currents mostly occurs in front
of the extremes and is nearly balance with the increase
in kinetic energy of the upper ocean currents



Far from the coasts, Extreme Events are
opportunities of high scientific values to
investigate how natural processes at their
peaks can transfer energy and matter
within and across boundaries, and to
identify the mechanisms involved and their
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Surface area~ 89000 km?2> Lake Superior, the world largest freshwater
lake: a transfer of 1 6To of Salt in 5 days

60°W 50°W 40°W
ongitude

SMOS microwave satellite-derived SSS composite images of the Amazon plume region revealing the SSS conditions

(a) before and (b) after the passing of Hurricane Igor, a category 5 hurricane that attained wind speeds of 136 knots in September 2010.
Color-coded circles mark the successive hurricane eye positions and maximum 1-min sustained wind speed values in knots.

Seven days of data centered on (a) 10 Sep 2010 and (b) 22 Sep 2010 have been averaged to construct the SSS images, which are smoothed
by a 1° x 1° block average.
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MPC Sentinel-1 portal

SAR roughness (ESA,
OceanDatal.ab)

N\Bx'\"l‘“.o‘l

SAR cross-spectrum imaginary
(ESA, OceanDatalLab)

v SAR cross-spectrum real (ESA,
OceanDatal.ab)
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Wind speed: 31.8 m/s
Swath date: 09/07/2004 06:25 Model date: 09/07/2004 06:00
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Example of seismic - SAR synergy

UNM.LHZ.2008 | ] Storm location
From seismic (blue bands)
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Ignatures of 3 co-evolving 20
East and Central tropical Pacific as seen from SMOS, SMAP and AMSR-2
observations (beyond others)

SMOS 2015 AUG 29
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Example of Sentinel-1 A Acquisition F
2015 Sept 8. From 16:40 to 16:46




azimuth distance [km]
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From 2015/09/08 16:40:00 to 2015/09/08 16:46:00

Example of Sentinel-1 A Acquisition
2015 Sept 8. From 16:40 to 16:46




#029 /lon=-160.03 / lat=27.89 / inc=24.23
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From 2015/09/08 16:40:00 to 2015/09/08 16:46:00

Example of Sentinel-1 A Acquisition
2015 Sept 8. From 16:40 to 16:46
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date of 2015

Example of retro-propagated Sentinel-1 A  Swell
Measurements. Data acquired the 2015 Sept 8 16:40 to 16:46
UTC

. 3 tracks corresponding to the 3 hurricanes Kilo, Ignacio and
Jimena (from left to right) are overplotted. Color code is
time.
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6™ of September |

xample ot retro-propagated Sentinel-
acquired the 2015 Sept 8 16:40 to 16:46 UTC
« 3 tracks corresponding tfo the 3 hurricanes Kilo, Ignacio and Jimena
(from left to right) are overplotted. Color code is time.
« Refocalisation area is found along the Jimena track the 6™ of
September. On the right hand side of the track.




Trapped-fetch waves - distinctive feature of
TC wave field
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Today ideal instrument .. (wide-swath, high-resolution,
topography, roughness, Doppler, emissivity, reflectance, ...) = the
combined use of observations, including in situ measurements

Very (too) large number of spatio-temporal scales under local
and non-local interactions

Improved tfechnologies (instruments, resolution, computer
capabilities, storage, dissemination) all contribute to improved
combined analysis

Theoretical frameworks and numerical simulations can be used
to assess the causes and contexts of the different observations
(including sensor physics, observability conditions and
instrument capabilities), to refine dynamical/statistical gap

filling methods

New challenges, new altimeter instruments (SARAL, Sentinel-3,
SWOT, .., CubeSat opportunities), possible new high-resolution
microwave instruments (10-20 km), Doppler measurements to
infer sea surface currents (SAR and/or RAR-SKIM or
DopplerScat), and combined roughness contrasts as local
quantitative proxies to trace strong surface gradient areas
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Opening the Pandora’s box ?

Archiving data leads to very large heterogeneous and
multimodal databases

Data assimilation is growing in response to the growth of
data collected, but (personal opinion) tremendous amounts of
information still remain hidden in data archives.

Knowledge trees and complex algorithms are essential to
avoid the Google's principle, i.e. pertinence = popularity

Research efforts to be concerned with the definition of
adequate exploratory processes to detect relevant patterns
in large, heterogeneous, multidimensional observation data
sets with different resolutions to better approach complex
spatial and/or temporal dynamics of the ocean system.
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LETTRE XX

De M. Jean Srooxen,
A. B. 5. Joux’s Camsrince.

Génes 1.*F Mai 18a2.

Vors m’'avez fait I'honneur, M. le Baron, de me
demander un extrait du mémoire que j'ai pris la li-
bert¢ de vous communiquer relativement a un phéno-
méne Jumineux qui se montre sur la mer lorsque le
soleil ou la June y donuent dessus (*), et que vous voulez
avoir la bonté d'insérer dans votre Correspondance

L’équation en question est:

a® 2c0s. Za 2. c08>J 4= acos*J .a.c0s. Z

e R V‘W -+ c08.> Z = Y ¥z,

2c08.Jsin.Z.x

Va2 4 ) '

Par la quatriéme observation.

2 == . 0005343 — 1. 928116} < 0724429

A .0000013 4. 0005593 - . 0585262 . 0590868

De-la, log. A == 1"1.9557479.5 == log. cosin. de 25°




