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Introduction to satellite radars:
Synthetic Aperture Radars (SAR)
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SAR = Synthetic Aperture Radar

An active instrument that transmit/receive EM radiation, store
data in amplitude and phase (real and imaginary part)

. Works in the presence of clouds, day and night
. Operates at microwave (or radar) frequencies
. Fine resolution is independent of the platform height, so

images with the same geometric resolution (order of
10 m) can be obtained from satellites as from airplanes



SAR principles:

- SAR is carried out on
satellite with usually near-
polar orbit, at an altitude
~600-800 km

- Antennasizeis~10by 1
m

- Incidence angle between
15° and 60°

Hadai
antenna

Beam footprint

Figure 10,1, The general arrangement of a satellite SAR.
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SAR imaging <
geometry

Antenna

Azimuth

llluminated area

A short pulse 1s emitted by the
antenna and then the amplitude
and phase of the backscattered

signal 1s recorded as a function of
time

This 1s repeated over again while
the platform 1s moving

Thus a 2-dimensional image 1s
generated.




SAR principles

Short (microsecond) high energy pulses are emitted and the
returning echoes recorded, providing information on:

- magnitude (or attenuation)

- phase

- time interval between pulse emission and return from the object
- polarization

- Doppler frequency

The same antenna Is often used for transmission and
reception.



SAR concept:

- SAR receives and records the echoes coherently — this
needs a detector with a very high sampling rate

- Coherent recording of the echoes enables the phase
history of individual scattering elements to be tracked

- Analysis of this coherent record from many echoes delivers
very fine resolution in azimuth and range directions
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AzimutH reso|ut|on

SLAR systems
—y

* The spatial resolution in the along-track direction (i.e. the
azimuth) is determined by the angular width (or aperture) of
the azimuth beam pattern (/)

ENVISAT case
Magar = 2.6 CM
L=10m

R =850 km h

= 0,,= 4.25km

http:/Avww.cls fr © 2008 Connaitre aujourd’hui, mieux vivre demain SAR training to improve analysis in oil spill emergency context



AzimutH reso‘utlon

Improving azimuth resolution: from SLAR to SAR

e Azimuth resolution is determined by the angular width of
the azimuth beam pattern

— resolution increases with range
— smaller resolution means larger antennas (5 = A/L)
— antennas became too large to realistically mount on an airplane

* This can be solved by using a small antenna to
“synthesize” what a larger antenna would have
collected, thus generating a synthetic antenna or aperture

http:/Avww.cls fr © 2008 Connaitre aujourd’hui, mieux vivre demain SAR training to improve analysis in oil spill emergency context



AzimutE reso‘utlon

Synthetic Aperture Radar

« An artificial larger antenna is synthesized using
displacement of the antenna along the track

* Finer azimuth resolution Is achieved keeping
track of the history of the Doppler frequency
caused by the relative displacement of the target
w.r.t. to the antenna.

* Best achievable resolution /

/

. © 2008 Connaitre aujourd’hui, mieux vivre demain SAR training to improve analysis in oil spill emergency context




Range resolution

Radar

Antenna '
4 Measured Radar Signal

Radar pulse in

2 Pulse sweeps

o~ \  across swath s
P at speed of light -~
‘ o Puise almaost

at far end of the
swath

g”;\ Antenna beam
” pattem on the
graund

Figure 6-15. Imaging radars typically use antennas that have elongated gain patterns that are point-
ed to the side of the radar flight track. The pulse sweeps across the antenna beam spot, creating an

echo as shown in this figure. 19
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Phase history of a point target

Sensor moves along x-axes (azimuth)
and emits radar pulses to the ground

The distance between the sensor at
position x and the target can be
expressed as

r=/22 +rs

where r, denotes the minimum
distance between them at x=0.

As the extension of the radar footprint
on the ground is much smaller than
the target distance (x<<r), the
following approximation can be
made:

[, 2 z*
r=rmTn 1+Eﬁﬂ}+?
0 0

Entfernung

Punktziel




Along-track resolution

Consider a radar system flying at a constant speed along a
straight and level trajectory as it views the terrain.

For a point on the ground the range to the radar and the radial
velocity component can be determined as a function of time.

Radar position = (0, v-t, h), Target position = (X,, Y., 0), Range to target, R(t)

R(1)= 0 -x, )+ (vet—y )+ (h-o) Z
(0,0, h)
R(O):\/xz+y§+h2 i
di:R(t): v(v-t-y )
dt \/x02+(v-t—y0) + h?
R(0) - ———os || el (Xo, Yo, 0)
\/xz+y§+h2
fo = —R(0)= ——22" X

21
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Phase history of a point target

The phases of the received echos, resulting from the two-way distance 7, are:

m [ el ra?
¢ —_— 2_ . [ a— . s 10
plz) =2~ (ra + zra) wre T+ const (10)

Assuming a constant sensor velocity ¥ and the abbreviation k = 27v?/Arg, a

quadratic phase behaviour in time is resulting, neglecting the constant phase term,
which has no time dependency.

o(t) = kt?

The quadratic phase behaviour corresponds to a linear change in the received azimuth
frequency f(t), the so-called DOPPLER-effect.

m

k (12)
m



Phase history of a point target

The maximal illumination time of a point target is defined by the extension of the
antenna footprint in azimuth. This length, equal to the length of the synthetic
aperture, 1s determined by:

. Em . E‘F‘ﬂ.rﬂ

maT — —
u u

The bandwidth of the signal in azimuth B, is, therefore,

208,

B, = [(—tmaz/2) — f(+tmac/2) = N

This bandwidth in azimuth sets also the lower limit of the pulse repetion frequency
(PRF) of the radar, with which the radar pulses are emmitted to the ground. After
eliminating the carrier frequency (demodulation in the receiver hardware),

frequencies between — B, /2 and + B, /2 are present in the complex signal.



Unfocused SAR

Processing SAR phase data to achieve a fine-resolution image requires
elaborate signal processing.

In some cases trading off resolution for processing complexity is acceptable.

In these cases a simplified unfocused SAR processing is used wherein
only a portion of the azimuth phase history is used resulting in a coarser
azimuth resolution.

In unfocused SAR processing consecutive azimuth samples are added
together (in the slow-time domain).

Since addition is a simple operation for digital signal processors, the image
formation processing is much easier (less time consuming) than fully-
focused SAR processing.

24



Unfocused SAR

Summing consecutive samples, also
known as a coherent integration or
boxcar filtering, is useful so long as the
signal’s phase is relatively constant
over the integration interval.

Example

For a 20-sample interval the central
portion of the chirp waveform (zero
Doppler) is relatively constant.

For the outer portions of the chirp the
phase varies significantly and
Integrating produces a reduced output.

(a) Real part of signal

20
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(b) Imaginary part of signal
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(c) Boxcar size = 20 samples

1f 20

Magnitude
o
(4} ]

0 b N W\ X
-100 -50 0 50 100
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Figure 5.21: Boxcar filtering applied
to linear FM signal. 25



Unfocused SAR

Example (cont.)

Over a 38-sample interval phase
variations within the central portion of
the chirp waveform results in a reduced
output (0.8 peak vs. 1).

The magnitude of the first sidelobe is
also larger (0.4 vs. 0.3).

The width of the main lobe is narrower.

(a) Real part of signal

1 3
L o5
2
£ 0
5 _os
1} 38
-100 50 0 50 100
(b) Imaginary part of signal
1_1 . . . -
5 os| \ ] |
'é 05
a2 Of )
Iy
-1} _ 38 ; ,
-100 -50 0 50 100
(d) Boxcar size = 38 samples
08f 38 .

ol M

-100 ~-50 0 50 100
Time (samples)

Figure 5.21: Boxcar filtering applied
to linear FM signal. 26




Unfocused SAR

The resolution improves with increased integration length up to a point

when oscillations in the signal are included in the integral.
(a) Resolution

(b) Peak sidelobe ratio

~ 30 0 :
3 : : : : : :
B 25 @o : ; : : : ;
3 D b T
82 x R
E 15 | . g _1 0 ................
= 10 : : ; : : _15 : ; : : ;
20 25 30 35 3840 45 20 25 30 35 3840 45
Boxcar size (samples) Boxcar size (samples)

IRW = impulse response width

Figure 5.22: Resolution and sidelobe ratio for unfocused SAR processing.

The maximum synthetic aperture length for unfocused SAR is L, which
corresponds to a maximum phase shift across the aperture of 45°,

L =R 1r/2, (m) |'7L

The azimuth resolution for L=1Lis

Ay = A/RL/[2, (m)

Notice the range- and frequency-dependencies of Ay.

Xo =
Focal Point

27



Focused SAR

To realize the full potential of SAR and achieve fine along-track
(azimuth) resolution requires matched filtering of the azimuth
chirp signal.

Stretch chirp processing, correlation processing, tracking
Doppler filters, as well as other techniques can be used in a
matched filter process.

However the range processing is not entirely separable from the

azimuth processing as an intricate interaction between range and
azimuth domains exists which must also be dealt with to achieve
the desired image quality.

28



Focused SAR

In SAR systems a very long antenna aperture is synthesized
resulting in fine along-track resolution.
For a synthesized-aperture length, L, the along-track resolution, Ay, is
Ay = AR [(2L)
L Is determined by the system configuration.

For a fully focused stripmap system, L, = ,,-R (m), where
B., IS the azimuthal or along-track beamwidth of the real antenna (3,, = A/{)
R is the range to the target

For L =L, Ay = {/2 (independent of range and wavelength)

29



Processing in azimuth

The echo of a single point target is contained in many received radar pulses and
appears defocused.

The aim of SAR processing, or compression, is to focus all received energy of a
target on one point at t=0.

To achieve this, phase history is used. The received signal in the azimuth direction
can be rewritten as

Sa(t) = Ap exp(i(t)) = Agexp(ikt)
Where A, denotes the backscatter amplitude of a point target (complex).

The idea of azimuth compression is to adjust all phase values to the same value
followed by coherent summation.

To achieve this, a correlation of S,(t) with a reference function R(t) = exp(—ikt*)
Is performed.

The reference function has exactly opposite phase.



The result of the correlation is then

Ve)= [~ S(OR(+E)de (18)
= [ Avexp(ike?) exp(—ik(t+ )W (t+)dE (19

= Ay exp(—ikt?) /: W(t+€)exp(~2ikEdE (2

Or after applying FT:

V) = Aotyeey37 exp(—ik?) [*““““’"“*)] o5)

The result of this correlation is the image. The principal shape of the
resulting impulse response corresponds thereby to the FOURIER-
transform of the weigthing function.



In Fig. 3.2 this process 1s illustrated.

T - e 5
i Ll ]
_;.U.q._i.h. | E Mmmm

skt ak b

Figure 3.2: Signal compression. Real part of the complex signal of an 1deal point
target response (left) and amplitude of the compressed signal (right).

Defining the resolution as the half distance between the first
minima of the main peak at ¢ = £ /kt,;nar, a synthetic aperture

consequently has an azimuthal resolution of:

Baa = =— = (26)



Along-track resolution

Sensor position A B “ C
Target 7 Z Azimuth —
slant /
range /
\ /
R, \ / Beam pattern
\ \ /
A
ﬁ Target

Received signal strength

0 ' Azimuth time —

Frequency

Azimuth time —

Figure 4.10: Azimuth beam pattern and its effect upon signal strength and

Doppler frequency.
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Raw data

Y
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SAR processor
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SAR processing example

Reading aRang szl eqpogtdime raw data




(a) Raw SAR data (c) Part processed SAR data (e) SAR Image
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Ocean applications



New Ocean Waves Level 1
Algorithm/Product
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A decisive breakthrough : the cross-spectral

Based on ERS Image products, 6.
Engen and H. Johnsen (NORUT)
proposed the use of Single Look
Complex (SLC) imagettes using

cross-spectra methodology (Engen
et al., 1995, TGARS)

Improvements:
Direct uncorrelated noise
removal
Hands-off resolved wave
propagation ambiguity in most
cases (85%)

European Space Agency



New algorithm philosophy

Level 1 Product

Processing
Set-Up File

Look-Up Table

/

Cross Spectra
Estimation

Clutter & SNR
Estimatio

N

Wind Speec
Retrieval

Spectra Retrieval

Level 2
Product
Generation

Level 2 Product

Inversion Model:

D T LT ER

where

nlin

x  (k;U_); from look —up table

[ R ]

T(K) =ik —w, +2k_,k Vo ! G(9)
V

l‘<X - -
G@@) = sin @ +icoséd

k

AO-cmod 1 1

Vo =

Ae cmod 2krad COSH
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Figure 18 : HIMAGE cross-spectrum. Image intensity(top), real part of cross spectra (left),
imaginary part of cross-spectra (right).
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ERS data as testbed for ENVISAT

e N NN N B

Seqguence of ERS Wave Mode orbit processed
into ASAR Wave Mode Level 2 product
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* Ocean currents retrieved from SAR Doppler shifts

Latitude {N)

X (km)
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Surface Doppler velocity Uy, (m s7)



Facets Partlal Contrbutlon to Vd

o
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Partial contribution of different type of facets to the total

C-band Doppler velocity at wind speed 10m/s for VV (left) and HH (right)

polarizations.
Solid lines are for Bragg-facet,

dash-dotted lines are for mirror points,

dashed lines are for breakers.

C-band Doppler velocities for VV (solid line)
and HH (dashed line) vs. incidence angle
at 10 m/s wind speed



* Doppler shift: Main equation
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1 Background characteristics of Doppler shifts
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Figure 2. Observed WM (color) and simulated (solid) wind dependence of C-band Doppler shift for VV polarization in
(A) and (C) and HH polarization in (B) and (D) at (top) 23" and (bottom) 33" incidence angles. The color represents the
spread in number of observation points. The open circles mark the mean {it to the observations. Upwind corresponds to
positive radial velocity.



* NMona JonnepoBCKOW CKOPOCTU B pallOHe Te4YeHUA Mbica ronbHbINA
* Doppler velocities in the Agulhas current
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Figure 1. Time series of the Doppler velocity from the ascending ASAR wide swath (420 km) images on (right) 16,
(middle) 19 and (left) 22 September 2007 covering the greater Agulhas Current region. The color bar marks the radial
velocities from —3 m/s to +3 m/s. Positive speed is directed towards the SAR look direction. Black curve marks position of

the maximum geostrophic current derived from altimetry 7-day mean.
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1o obtain direct ocean surface velocities from space:
A speed-gun principle (Doppler analysis)

SRTM 2-Antenna Interferometry |

Ultra-high resolution
Limited to line-of-sight direction




1o obtain direct ocean surface velocities from space

SRTM range velocity (mis)




RADARSAT-1 modes (1/2)

Extended
(low incidence)

Satellite
Ground Track

ScanSAR Extended
Wide (high incidence)

» 20° Standard
250 km
500 km

425 km

© 2008 Connaitre aujourd’hui, mieux vivre demain SAR training to improve analysis in oil spill emergency context



I —
RADARSAT-1 modes (2/2)

.

OF®
CLS

COLLECTE LDCALISATHON SATELLITES

FINE
" 37 - 56 8x8 36 - 48 1 HH

15 positions, 60% overlap
STANDARD

" 100 25 x 28 20 - 50 4 HH
7 positions, > 10% overlap
WIDE

" 150 25 x 28 20 - 40 4 HH
3 positions, 3% overlap

EXTENDED - High

75

25 X 28

50 - 50

HH

EXTENDED - Low

170

25 x 28

10 - 20

HH

http:/fwww.cls fr © 2008 Connaitre aujourd’hui, mieux vivre demain

SAR training to improve analysis in oil spill emergency context




B
CL RADARSAT-2 Features

COLLECTE LOCALISATION SATELLITES

High resolution:

—3m

— multi-look 10 m

« Polarimetric modes
— single/dual polarization ... .
— quad-pol e M

* Right and left-looking
capability

« Enhanced ground system

providing:

— efficient satellite tasking
(12 - 24 hours routine)

— faster data processing

— data encryption

ScanSAR Extended Beams
Fine-Resolution (High Incidence)
Beams

Multi-Look Fine Resolution

Fine Quad-pol
Standard el (reduced swath width)
Beams

Standard Quad-pol

Ultrafine (reduced swath width)

Beams

http:/Avww.cls fr © 2008 Connaitre aujourd’hui, mieux vivre demain SAR training to improve analysis in oil spill emergency context



0rRO
CLS RADARSAT-2 modes
COLLECTE LOCALISATION SATELLITES

FINE 50 10x9 37 -49 1x1 HH, HV or VV,VH
STANDARD 100 25x 28 20 - 49 1x4 HH, HV or VV,VH
WIDE 150 25x 28 20 - 45 1x4 HH, HV or VV,VH

http:/fwww.cls fr © 2008 Connaitre aujourd’hui, mieux vivre demain SAR training to improve analysis in oil spill emergency context /\



RS _
CLS Sentinel 1 (ESA)

COLLECTE LOCALISATHON SATELLITES

= e

y
P SENTINEL 1
e M 5 . .
Flight Direction
- SENTINEL 1
0 N
SENTINEL 1
\.’
R ~!N
SENTINEL 1 \

Sub-Satellite Track

A

Orbit Height
~700 km

~  Extra Wide Swath

i Mode
Strip Map

Mode
Wave Mode

Interferometric Wide Swath

Mode
 httpsAvwwelsfr . © 2008 Connaitre aujourd’hui, mieux vivre demain SAR training to improve analysis in oil spill emergency context




T
CcLS Sentinel-1 modes

Wave (WV) 20 10x 10 23/ 36 HH or VV

Strip Map (SM) 100 10 x 10 20-49 | HH-HV or VV-VH

'(';‘\f\?g)emmet”c wide swath 250 20x20 | 30-45 | HH-HV or VW-VH

http:/Avww.cls fr © 2008 Connaitre aujourd’hui, mieux vivre demain SAR training to improve analysis in oil spill emergency context



